EADIO $\square K$
 InI: ETHONICS

 LATEST IN TELEVISION • SERVICING • AUDIO

 LATEST IN TELEVISION • SERVICING • AUDIO}

In this issue: TV Tube Substitutions.
Field Strength Meter • Pocket Superhet

thenew OUMDII AUTOMATIC-FDCUS

Completely

Eliminates-

- FOCUSING COIL
- FOCUSING CONTROLS
- MECHANICAL FOCUSING DEVICES

Provides-

- AUTOMATIC FOCUSING at all times
- FINE OVERALL FOCUS
- REPLACES ALL $17^{\prime \prime}$ GLASS RECTANGULARS WHETHER ELECTROSTATIC OR ELECTROMAGNETIC

BE A SUCRE VF techinctar

America's Fast Growing Industry Offers You
Available to
VETERANS under G.I. Bill

I trained these men

Q1. EXTRA MONEY
IN SPARE TIME

Many students make $\$ 5, \$ 10$ a week extra fixing neighbors' Radio in spare time while learning. The day you enroll I start sending you buld with parts I send helps you service sets. All equipment

2. GOOD PAY JOB

3. BRIGHT FUTURE

I Will Train You at Home

 Read How You Practice Servicing or Communications - \square with Many Kits of Parts You Get!

Radio Month.....	10	Question Bax......
Radio Business....	14	79
Niscellany $\ldots . .$.	82	

New Devices 70
New Patents...... 72 Technotes 88
Rodio Electronic
echnotes........
People 90
90
Circuits 74 Cammunication ... 92
Try This One..... 76 Book Reviews...... 93

ON THE COVER

Western Union Telecar in typical residential area, with pioneer Tolecar aperator Wallace Woodward at the wheel. Note microphone on steering column. Recorder cover was removed for photography, would normally be in place. Kodochrome by Avery Slack

[^0]
New 3 ${ }^{\text {did }}$ Edition
 SPRAGUE TV CAPACITOR REPLACEMENT MANUAL

Here-just off press-is the new Sprague Manual that tells you in a jiffy just what capacitor
to use on practically any teleyou in a jiffy just what capacitor
to use on practically any television replacement job. Includes complete electrolytic capacitor replacement data on 964 TV receivers-saves you time, paves the way to better work on practically every job!

GET YOURS...TODAY!
Ack your Sprague distributor for a FREE copy of this now Manual M-473. Or, write your name on the attached coupon and en. clore 10 c to cover handing and mailing and we will rush your copy directly to you!
Mail to:

SPRAGUE PRODUCTS COMPANY

81 Marshall Streat, North Adams, Mass.
Enclosed is 10 cents for your M-473 IV Manual.

Name

Street

City \qquad

State

Let NATIONAL SCHOOLS, of Los Angeles, a practical Technical Resident Trade School for almost 50 years, train you for today's unlimited opportunities.

GOOD JOBS AWAIT THE TRAINED

You are needed in the great modern Radio, Television and Electronics industry! Trained technicians are in constant and growing demand at excellent pay-in Broadcasting. Communications, Television, Radar, Research Laboratories, Home Radio Service, etc. National Schools Master Shop Method Home Study Course, with newly added lessons and equipment, can train you in your spare time, right in your own home, for these exciting opportunities. Our method has been proved by the remarkable success of National Schools-trained men all over the world.

You Learn by Building Equipment with Standard Radio Parts We Send You

Your National Schools Course includes not only basic theory, but practical training as well-you learn by doing. We send you complete standard equipment of professionai quality for building various experimental and test units. You advance step by step until you are able to build the modern superheterodyne receiver shown above, which is

NOW! new professional multitester INCLUDED

This versatile testing instrument is
 portable and complete with test leads. Simple to operate, accurate and dependable. You will be able to quickly locate trouble and adjust the most delicate circuits. You can use the Multitester at home or on service calls. It is designed to measure AC and DC volts, current resistance and decibels. You will be proud to own and use this valuable professional
GET THE DETALLS - SEND THE COUPON =

WE BRING
 NATIONAL

 SCHOOLS TO YOU!

 SCHOOLS TO YOU!}

Lessons and

Instruction Material Are Up-to-date, Practical, Interesting

National Schools Master Shop Method Home Training gives you basic and advanced instruction in all phases of Radio, Television and Eiectronics. Each lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own shops and laboratories, under the supervision of our own engineers and instructors. A free sample lesson is yours upon request-use the coupon below.

TELEVISION TRAINING A complete series of up-to-

 the-minute Television lessons is an integral part of yourHere are just a few of the interesting facts you learn with the

FREE SAMPLE LESSON

1. How radio receivers operate.
2. How the antenna circuit is constructed.
3. Converting signal currents into sound.
4. How the R-F transformer handles the signal.
5. How the tuning circuit functions.
6. The Radio "bands." course, covering all phases of Television repairing, servicing and construction.

veterans
HURRY!
ACT NOW!
G.I. BILL
expires July 25

NATIONAL SCHOOLS

LOS ANGELES 37. CALIFORNIA EST. 1905 简 MAL OPPORTUNITY COUPON FOR QUICK ACTION (Mail in envelope or 4000 South Figuerod Street paste on penny posicard.l Los Angeles 37, California
Mail me FREE the book "Your Future in Radio-Television" and the sample lesson of your course. I understand no salesman will call on me.

NAME
$A G E$
ADDRESS
CITY \qquad ZONE STATE \square Check here if veteran of World War IL

The machine at the left is saving "Ah!" It's the new electrical vocal system developed at Bell Laboratories. Top sketch shous human vocal system also saying "Ah!" The electrical model is sketched below it. Energy source at bottom of "tract" can emit a buzz sound. like vocal cord tone, or the hiss sound of a whisper.

No one else speaks exactly like you. Fach of us uses different tones to say the same words. To study and measure how we make speech, aconstic seientists of Bell Telephone Laboratories built a model of the vocal system.

Electric waves copy those of the vocal cords, electric elements sim-
ulate the vocal tract, and, by adjustments, vowels and consonants are produced at pitches imitating a man's or woman's voice.

Using this electrical system, telephone scientists will be able the better to measure the properties of people's voices. Knowing more about speech they can find better
and cheaper ways to transmit it.
This is another step in the research at Bell Telephone Laboratories which pioneered the exact knowledge of speech. Past work in the field is important in today's fine telephone service. A still deeper understanding of speech is essential in planning for tomorrow.

CREI Technical Training Qualifies You for "Tough" Jobs-at Better Pay-in TELEVISION \& FM SERVICING!

Serewdriver mechanics could get by in the old days of radiohut no longer. TV" complicated circuits call for skilled men capalshenf using modern test equipment. Anvone in the fieldif he in to - ay in Jusines-needs to know how a TY set works. why it work- and low to make it work better. Hit-and-miss methodsare nom only inefficient : they are unsuccessfuland unprofitable.

As one manufachures sprive manager says. "If you are a TV man who can repair a set only by low and phodding work wateh nut. Jrefty son a youngster will come along with training and -kill. He til da a given jab in neme-quarter the time. He ll be paid twice as much per hour as you get-but the customer will still get off at half-price, "
Opmormities for profitable servicing work are practically unlimited. With partial on complete-mabilization of the electronic* indutry a definite pussibility, a qualified serviceman will be
in line for one of two things: increased and profitable work as a civilian. either in his own shop or in essential industry; or military service. where technical electronics ability is quickly rewarded with supervisury jobs at extra pay. So. in or out of the armed services. youll he better off with good technical training.

That's whe more and more service men are ung CREI's pracbical home-study course in TV-FM servicing. Designed by topnotch teachers. laught by practical TV instructors, reviewed and checked by qualified experts. kept up-to-date through direct contact with manufacturers dealers and aervice sinecialists. the CREI course equipw you with the right "towls" to earn more momey.

Start your preparation while there is still time! The next few munths can be all-important-don"t put it off. It costs you only a few minutes time to get the facts. Nail the coupon below for complete details.

THE THREE BASIC CREI COURSES:

* PRACTICAL RADIO ENGINEERING

Fundamental course in all phases of radio-electronics

\star PRACTICAL TELEVISION ENGINEERING

Specialized training for professional radiomen

* TELEVISION AND FM SERVICING

Streamlined course for men in "top-third" of field also avallable in residence school courses

CAPITOL RADIO ENGINEERING INSTITUTE

An Accredited Technical Institute Founded in 1927
Dept. 147C, 16th Street \& Park Road, N. W. Washington 10, D. C.

San Francisco (2) 760 Market St.
with a long-term user warranty. G.E. pioneered the customer warranty on picture tubes... commencing with date of retail purchase . . . safeguarding your customers and you, as tube dealer, for six months after installation. By this BIG step forward, G.E. removed any worry that its picture tubes on your shelves might run beyond the manufacturer's warranty period. Now you can stock a full line with confidence. And no matter when the tubes are installed, your customers will get full-term, registered G-E warranties in every case!

F\|RST to benefit from full-page tube consumer advertising. General Electric made tube history when it launched full-page tube advertising in LIFE and the POST-a continuing campaign that is reaching regularly more than $24,000,000$ readers from coast to coast. As a G-E dealer, you profit directly from the tremendous G-E tube acceptance which this advertising creates.

F\|RST in wide range of G-E tube types and sizes available. Round tubes and rectangular-glass, metalsmall, medium, large-screen-General Electric builds virtually all types and sizes, giving you the biggest picture-sube line. You can service any TV set with assurance that a G-E tube will meet your needs! Conversions to larger screens often are practical-and profitable. With G-E tubes, you can give set owners the larger, easier-to-view pictures they want. And G.E Aluminized Tubes enable you to give them brighter TV picsures!
in proved tube quality. You can't beat G-E picture-tube performance! Quality features (example: all-glass electron-gun beading) typify the care G.E. gives to design details that make for superiority. Afterwards comes precision manufacture by ultra-modern equipment in new, well-lighted premises . . . followed by final tests which relentlessly reject any tubes with faulty screen or other characteristics. G-E picture tubes uniformly are good tubes! They give top owner satisfac-tion-build profits and prestige for youl

[^1]
 tage you can give it! That's why you owe it to yourself to find out about one of the most COMPLETE, practical and effective ways now available to prepare AT HOME for America's billion dollar opportunity field of TELE-VISION-RADIO-ELECTRONICS. See how you may get and keep the same type of basic training equipment used in one of the nation's finest training laboratories . . . how you may get real STARTING HELP toward a good iob or your own business in Television-Radio-Electronics. Mail the coupon today for complete facts - including 89 ways to earn money in this thrilling, newer field.
ABOVE: Build and keep a real 16 INCH commercial TV receiver. Optional after completing regular training at slightaddi. tional cost.
tronal cast.
D.T.I., ALONE, INCLUDES BOTH MOVIES and HOME LABORATORY In addition to easy-to-read lessons, you get the use of HOME MOVIES -an outstanding training advantage - plus 16 big shipments of Electronic parts. Perform over 300 fascinating experiments for practical experience. Build and Get BOTH of these equipment shown at left.

MODERN LABORATORIES

If you prefer, get all your preparation in our new Chicago Training Laboratories - one of the finest of its kind. Ample instructors, modern equipment. Write for details!

Multimeter

HOME MOVIES

aCT NOW! MAIL COUPON TODAY!

DeFOREST'S TRAINING, INC., Dept. RE-7-H 2533 N. Ashland Ave., Chicago 14, III.
Without obligation, I would like your late News-Bulletin showing 89 ways to earn money in Television-Radio-Electronics . and how I may prepare to get started in this thrilling field.

Name.	Age........
Street..	
City	Apt.i.e.

FREE TEST EQUIPMENT

 BONUS PLAN BENEFITS CUSTOMER, SERVICEMAN AND PARTS DISTRIBUTORHere is how the Thomas Free Test Equipment Bonus Plan works With every Thomas Photo-tron Picture Tube you buy is a certificate entitling you to a discount on the purchase price of any piece of Simpson test equipment. You may use as many of these Thomas certificates as you wish -up to and including the full purchase price, these certificates are redeemable at all leading Parts Distributors.

original equipment with these 20
TV set makers and many others...
ADMIRAL • HOFFAAN • OLYMPIC • MECK • PILOT hallicrafters - westinghouse - scott - Caleest STEWART-WARNER • KAY-HALBERT • MAGMAVOX EENDIX TELEVISION - PACKARD BELL - CROSLEY motorola - starrett • imperial - tele king

GRASSHOPPER is the name of a self-contained automatic weather station which transmits weather data by radio. The unit is parachuted by aircraft onto inaccessible territory. It was developed by Percival Lowell and William Hakkarinen of the National Bureau of Standards for the Navy Bureau of Ships.

This Grasshopper sends weather data.
After the station is parachuted to earth controlled explosive charges are used to disengage the parachute, raise the station (springs released; pulling it to an upright operating position; see photo), and erect a telescoping antenna. Weather-responsive devices then cause resistance changes which switch a radio transmitter on and off at a rate translated by a receiving station into temperature, pressure, and humidity readings. The time of transmission is controlled by a clock mechanism.

The developmental model of the weather station has an output of 2 watts. Operating on a frequency of 5 megacycles, it performs reliably over land at ranges of 100 miles. The dry batteries used are good for 15 days of intermittent operation.

TILTING ANTENNAS may be used in future u.h.f. television transmitting installations if tests by RCA are any indication.

Using RCA-NBC facilities, experimental station KC2XAK in Bridgeport, Conn. (Radio-Electronics, Aug., 1950) doubled its television signal strength in its program service area by a slight tilting of the transmitting antenna.
The antenna built for the tests was erected on one side of the Bridgeport transmitting tower. By means of a motor-driven arrangement, the antenna was rocked back and forth in a vertical arc of approximately 12 degrees to permit engineers to record the resulting variation in signal strength. Results recorded showed that the received signal was maximum when the antenna was tilted $21 / 2$ degrees up or down.

One drawback anticipated, however, is that it is possible that the gain in signal strength may increase interference with distant stations.

The experiment will be tried on v.h.f. TV channels also to see if similar improvement results.
"COMPOSITE COLOR TV," system proposed by RCA, Philco, Du Mont, Hazeltine and General Electric, will, according to Dr. W. R. G. Baker of G-E, "combine the best elements of the furthest advances in existing systems." Particulars of the plan were stated to include utilization of the present black-and-white standards to transmit brightness or detail, and to add the necessary color information on a subcarrier contained within the video band and transmitted simultaneously with the "brightness" signal. No information was given as to whether the system had been made to work experimentally, but it was stated that the committee responsible for the new development hoped to be ready with a set of proposed standards by the end of the year.

CBS officials, just given the go-ahead sign by the Supreme Court on their color TV system, were unimpressed. "Third and most brazen attempt by a group of officials of black-and-white set manufacturers to impede the CBS system by concocting still another paper proposal," was the way Columbia described the proposed system.
WHIRLWIND ONE is the automatic computing machine doing research on Whirlwind Project now being conducted by Du Mont at M.I.T.
The project was instituted in recognition of the fallibility of human choice in analyzing the problem of distributing available u.h.f. TV channels across the nation. The aim is to eliminate human errors and guesswork. Sample data has already been fed into the machine with promising results. It is expected that a complete report on Whirlwind computations and TV station distribution results will be submitted to the FCC during its coming hearings.

RUSSELL D. VALENTINE, radio pio-

 neer and chief engineer of WQXR, New York City, died at the age of 51 , after a long illness. He had been with the station since 1929 , when it was called W2XR. In 1934 it became the world's first high-fidelity broadcast station.Mr. Valentine's radio career began in 1914, with his amateur station 2GX, whose call was known throughout the world.
ANOTHER MAJOR STEP in its selfinitiated functional reorganization was announced by the Federal Communications Commission in providing for the establishment of a Broadcast Bureau to start operations June 4, 1951.
The new bureau will have an Office of the Chief and five divisions as follows: Aural Facilities, Television Facilities, Renewal and Transfer, Hearing, and Rules and Standards. The effect will be that a single bureau will be responsible to the Commission for discharging legal, accounting, and engineering functions in connection with all broadcast services.
DEBATES on the floor of Congress may be televised in the future if Rep. Jacob K. Javits, R., N. Y., has his way. He is circulating a petition among his colleagues to this effect. The opposition, to date, is stiff.

RADIO-ELECTRONICS for

Merit is meeting the ropidly rising demand for TV replacements with a IV line as complete as current and advance information will permit
TRY MERIT FIRST FOR TV CONVERSION OR REPLACEMENT!

HVO6 - Universal Ferrite cere "FIYBACK" permits widcst coverage.

MDF70 -70° high efficiency Ferrite yake for tubes up to 19^{*}

MWC.I-Width linearity control with AGC winding (Automatic Gain Control).

Zree!
Write today for:
[0 MERIT TV REPL GUIDE AND CATALOG -Dec. 1950 issue. Up-fo-date listing of all replacements.
Q MERIT 1951 CATALOG No. 5111 Show specs. on complete line of TV,? Radio, Amateur and Industrial Transformers.

REFER TO MERIT'S LISTING in Howard Sam's Phototacts

4443 nerth clark st., Chicago 40, ILL.

HERMAN T. KOHLHAAS, a former official of International Telephone and Telegraph Company, died in an automobile accident April 24.

For 42 years Mr. Kohlhaas was associated with I.T.T. and its predecessor companies, serving as editor of Electrical Commmication, the company's technical magazine, from 1925 to 1945 when he was named assistant vicepresident. He resigned in 1947.

He was a fellow of the American Institute of Electrical Engineers, and a senior member of the Institute of Radio Engineers.

CONSTRUCTION WORK was completed recently on the last of 107 radio relay stations along the Bell System's new coast-to-coast communications route. Building west from Omaha and east from San Francisco, construction crews met northwest of Denver:
The final link runs zigzag across some of the nation's most rugged terrain, including the Rocky Mountains, the Sierra Nevadas, and the Cuastal Range. The new system will provide more than 100 "through" telephone circuits between Chicago and San Francisco. The route will be ready for long-distance service by late August. It is hoped that before the year's end the microwave system will be equipped also to handle coast-to-coast television.
COLOR TELEVISION received new impetus from the May 28 Supreme Court Decision upholding FCC's approval of the CBS color system. This leaves Columbia free to carry conmercial as well as experimental color programs.

COLORED SOLDER is now being supplied by H. J. Enthoven \& Sons of England. One of the difficulties in mass-produced assembly of electronic components is to insure that all wiring joints have been soldered. It is common practice to coat each joint with a colored lacquer on inspection.

By incorporating a colored flux in the solder it is possible to indicate the finished joint automatically, as the flux runs to the edges of the joint and remains as a permanent indicator. The coloring matter does not affect the electrical or mechanical properties of the solder. Four colors are supplied.

INDISPENSABLE!
Photofact books

Photofact Television Course. Covers TV principles, operation and practice. 216 pages; profusely illustrated; $81 / 2$ $\times 11$ ". Order TV. 1

Television Antennas. New 2 nd edition. Describes all TV antenna types; tells how ta select, install, solve troubles. Soves time; helps you earn more. 200 pages; illustrated. Order TAG-1...

Television Tube Location Guide. Accurate diagrams show position and function of all tubes in hundreds of TV sets; helps you diagnose trouble without removing chassis. 200 pages; pocket-size. Order TGL-1........ Only $\$ 1.50$

1949-1950 Record Changer Manual. Vol. 3. Covers 44 models made in 1949, including multi-speed changers and wire and tape recarders. Original data based on actual onalysis of equipment. 286 pages; $81 / 2 \times 1 I^{\prime \prime}$; poperbound. Order CM-3.

Onir $\$ 3.00$
1948-1949 Changer Manual. Vol. 2. Covers 45 models
made in 1948.49. Poper bound. Order CM-2. Only $\$ 4.95$
1947-1948 Changer Manual. Val. 1. Covers 40 postwar models up to 1948 . Order CM-1 Only $\$ 4.95$

Recording \& Reproduction of Sound. A complete authoritative treatment of all phases of recording and amplificotion. $6 \times 9^{\prime \prime}$. Order RR-1 Only $\$ 5.00$

Post-War Audio Amplifiers. Vol. 2, A complete analysis of 104 well-known audio amplifiers and 12 well-known tuners made in 1949-50. 368 pages, $81 / 2 \times 11^{\prime \prime}$. Order

Post-War Audio Amplifiers. Vol. 1. Covers 102 amplifiers and FM funers made through 1948. 352 pages. Order AA.1...

Only $\$ 3.95$
Auto Radio Manual. Complete service data on more than 100 post-war auto radio models. Covers over 24 mfgrs. 350 pages, $81 / 2 \times 11^{\prime \prime}$. Order AR-1 Only $\$ 4.95$

Communications Receiver Manual. Complete analysis of 50 papular communications models. 246 pages, $81 / 2 \times$ $11^{\prime \prime}$. Order CR-1.............................. Onty $\$ 3.00$
Radio Receiver Tube Placement Guide. Accurate diagrams show where to reploce each tube in 5500 radio models, covering 1938-1947 receivers. 192 pages, pocketsize. Order TP-1............................. $\$ 1.25$
Dial Cord Stringing Guide. Vol. 2. Covers receivers made from 1947 through 1949. Shows you the ohe right way 10 string a dial card in thousands of models. Pocket-size. Order DC-2 . Only $\$ 1.00$
Dial Cord Guide. Vol. 1, Covers sets produced 1938 through 1946. Order DC-1................... Only $\$ 1.00$
Radio-TV Industry Red Book. 2nd Edition. Complete data on replocement ports for 22,000 sets made 1938.1950 including valuable TV information. Covers all major replace-
ments. Over 600 pages...................... Only $\$ 3.95$

Making Money in TV Servicing. Tested,
proved methods of operating a profitable IV service business. Written by Eugene Ecklund, B. E. E., former manager of the Ecklund, B. E. E.. former manager of the DuMont Laboratories, Inc. Covers planning, financing, wark control, purchasing, service charges, odvertising-plus much more. Own this practical guide to success now. Over 130 pages. Order MM.1, ... Only $\$ 1.25$

superiority of performance

remains unchallenged!

ine anchor Serkertanile
Single-Staģe Booster-for low signal areas
in or near cities. Assures consistently
good reception up
to 75 miles.

theanchor Comanger
Two-Stage Booster-recommended for distant rural areas. Assures consistently good reception for over
100 miles.

Despite critical material shortages, Anchor not oaly is offering the same high quality standards so widely hailed by the TV set industry, itself, but it is still making as many boosters as a year ag.s. To meet the current unprecedented demand, however, Anchor would have to expand, which is naturally not possible now! Therefore they have had to institute a very strict allocating system. No preference on deliperies to anyone has been or ever will be practiced.

When a booster is needed to complete a perfect installation, Anchor's outstanding performance under all conditions has made it the first choice of those who buy and sell. So always buy the best-first!

Radio IBusiness

Cartridge was develop and Develop characteristics
Engineering fearch Engineering to match the inally equalized respons trequen of LP records. It Records, Inc. idealistics of LP reveloped Columbia Records. characteristics were deve have for the models in the "CAC principles, high level of on the same engineering same new, high proved capa.

SPECIAL MODELS FOR PLUG-IN HEADS. Models CAC.W.J (l-mil needle) and CAC-78W.J (3-mil needle) are fu-nished with special terminals and fit-ings for quick, easy installation in rec.rd changer tone arms with lug-in heads. plug-in heads.

LIST PRICE-All Models
Sapphire Stylus . \$ 7.50 Diamond Stylus . 31.00

Astatic Crystal Devices manufactured under Brush Development Co. patents.

Merchandising and promotion

General Electric Tube Division, Schenectady, N. Y., released a new 107-page pocket-size handbook which lists the characteristics of every type of receiving tube likely to be found in AM, FM, or TV sets. It contains ratings and other data for fast trouble-shooting. Basing

diagrams for each of the 856 different tube types listed are also shown. The handbook is $35{ }^{\circ}$ and available at $\mathrm{G}-\mathrm{E}$ and Ken-Rad distributors.

RCA Tube Department, Harrison, N. J., published a new " 1951 Tube Movement and Inventory Guide" for service technicians. It is a 16 -page book in char't form designed as a year-round master control covering more than 400 receiving tubes and kinescopes. The chart provides a simplified record-keeping meth-

od which permits balanced inventories with a minimum of bookkeeping. RCA tube and parts distributors have it.

Sylvania Electric announced a new vestpocket TV tube selector which lists more than 100 TV picture tube types.

It indexes them as to shape, construction, and other characteristics. The (Continued on page 18)

No vocational field oflers more opportunities for "career" jobs and good pay than television-America's fastest growing industry. The demand for TRAINED and experienced tv servicemen is growing. There is a big shortage of such men now and will he for several years to come.

PLENTY OF GOOD JOBS OPEN TODAY

Radio-Television jobbers, dealers and service companies ofter lifelong opportunities with excellent salaries for qualified service technicians. Manufacturers of television receivers are looking for men with good service training as inspectors, testers and troubleshooters. Many experienced servicemen go into business for themselves. Others hold their regular jobs and earn extra money servicing TV receivers in their spare time.

Radio-electronics manufacturers busy with defense equipment contracts offer excellent job opportunities for men with a television technician background. Servicemen called into military service are further reducing the supply of skilled TV servicemen available for civilian activities. Think what television servicing offers you in terms of a lifetime career and financial security.

RCA INSTITUTES Home Study Course in TELEVISION SERVICING-

A Service to the Industry

Because of the critical shortage of Trained and experienced tv servicemen, rCa institutes is offering this highly specialized and practical home study course as a service to the working members of the radio-televi-sion-electronics industry. Its object is to train more good servicemen and to help make good servicemen better.
Never before has this course been available to anyone outside of RCA. It is now offered to $y o u$, through RCA Institutes, one of America's oldest and most respected technical training schools. The course covers most major makes and types of TV receivers. Available exclusively to men in the radio-television-electronics field. Not offered to the general public, or under G.I. Bill.
The cost is low . . only $\$ 9$ a unit for 10 units or $\$ 90$ total, on an easy pay-as-youlearn plan. At successful completion of the course you earn an RCA Institutes certificate that can lead straight to a better job at higher pay.

YOU STUDY AT HOME
In your spare time, you learn pre-tested In your spare time, you learn pre-tested
"How-to-do-it" techniques with "How-it-"How-to-do-it techniques with works" information in easy-to-study lessons. works" information in easy-to-study lessons. RCA Service Company in servicing thousands of hame television receivers.

YOU KEEP WORKING ON YOUR JOB
Because you work in the radio-televisionelectronics industry, your iob provides the laboratory work of the course. There are no laboratory work of the course. There are no
kits, parts or equipment to buy. Selfe kits, parts or equipment to buy. Selfemployed independent radio and televi
 servicemen are eligible for enrollment.

\star

SEND FOR FREE BOOKLET. Find out complete details of the RCA INSTITUTES Home Srudy Course in TEleVISION SERVICING. Don't pass up this opportunity to prepare yourself for a money-making career in the television industry. Illustrated booklet explains all the features of the course. Mail coupon in an envelope or paste on a penny posicard-NOW!

MAIL COUPON NOW!

RCA INSTITUTES, INC.

Home Study Department, RE-751
350 West Fourth Street, New York 14, N.Y.

Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Home Study Course in TELEVISION SERVICING." (No salesman will call.)
Name______________

Address
City
Zone____State

RAYTHEON MANUFAGTURING COMPANY

Newion, Mást, Chicago, III., Arlanto, Gios, Los Angeles, Calif, Excellenar in Elechonced

PRESIDENT of a leading airline.

CHEMICAL DIRECOOR of nationally known restarch laboratory.

CHAIRMAN of an important national defense board.

ENGINEER in charge of a famous company's engineering laboratory.

Jons these men who have made their mark: Men who by dint of ambition, intelligence and sound. practical I.C.S. training now enjoy positions of leadership in business and industry.

The sooner you start, the better your chances of making the grade. Right now, with the criti-

INVENTOR of a well-known U. S. Army rifle.

GENERAL MANAGER of one of America's largest chemical companies.

DESIGNER of a famous aircraft engine.

YOU
cal shortage of skilled labor trained men are hecoming leaders overnight. Hundreds of I.C.S. students are reporting promotions and pay increases, earning greater security for themselves and their families. How about marking and mailing the coupon today?

N Names and positions sent on request.

INTERNATIONAL CORRESPONDENCE SCHOOLS

SOX 2877-H, SCRANTON 9, PENNA.
Without cost or obligation, please send me full particulars about the course before which I have marked X:

Bualnese and Acodemic Courses	Air Condifiening and Pumbing Ceurses	Highway Engineering Lumber Dealer Reading Structural	Infornal Combustion Engines Courses Auto Technician	Ship Fitting Tool Designing Tcolmaking
\square Account'm Advertig'z	Air Conditioning Heating Plumbing	Blueprints	Auto Technician Aviation	Welding-Gas as Rlectric Raliread Couraes
\square Boozkeeping \square Bus. Law	\square Refrigeration	Sanitary Engineering	\square Diesel-Electric	Rir Brate
Business Administration	\square Steam Fitting	Structural Drafting	\square Diesel Engines	- Car Inspector
Business Correspondence Cert. Pub. Acct.		\square Surveying and Mapping	Q Gai Engines	\square Diesel Locomotive
\square Commercial \square Com'1 Art	Chemical Cou		Mechenical Ceurtes	\square Locomotive Engineer
Cost Accounting	\square Chemical Engineering	Communicationt	\square Aeronautical Eng'r's, Jr.	\square Locomotive Fireman
\square Federal Tax	\square Chemistry, Analytical	Ceuraes	\square Aircraft Drafting	L Locomotive Machinist
Forsmanship French	\square Chemistry, Mfg. Iron	\square Electronice	\square Forging Foundry Work	\square Steam-Diesel Loco. Eng.
Q Good English	d Steel	Practical Telephony	\square Heat Treatment of Metals	Stetienary Engineering
\square High School	Q Petroleum Refining	\square Radio, General	\square Industrial Engineering	Courses
\square Higher Mathematics	\square Pulp and Paper Making	\square Radio Operating	Industrial Instrumentation	\square Boilermaking
\square Illustration	\square Putp and Paper Making	\square Radio Servicing		\square Combuation Engineering
Industrial Supervision Motor Traffic	Civil Engineering, Archi-	\square Telegraph Engineering	Machine Shop Inspection	\square Engine Running
\square Postal Civil Service			\square Mechanical Drafting	Marine Engincering
\square Retailing			O Mechanical Engineering	r.
\square Retail Bus. Mgnt.	Courses	\square Electrical Drafting	O Mold-Loft Work	Steam Engineering
\square Salesmanship	\square Architectural Drafting	- Electrical Engineering	Patternmaking-	Toxtile Courees
\square Secretarial	Q Architecture	- Electric Light and Power	Wood. Metal	\square Cotton Manufacturing
\square Sign Lettering	\square Building Estimating	\square Lighting Technician	\square Reading Shop Blueprints	\square Loom Fixing
\square Spanish \square Stenography	\square Civil Engineering	Q Power House Electric	\square Sheet-Metal Drafting	\square Rayon Weaving
Traffic Management Typing	Coal Mining Contracting and Building	Practical Electrician Ship Electrician	Sheet-Metal Worker Ship Drafting	Textile Designing Woolen Manufacturing
Name.	Home		Clty	State
Present				king
Age Position	E	d by		5 A.M. to __P.M.
Length of Service in World War II		Enrollment under G.I. Bill ado Canadian residents send	roved for World War II Veterans. Sdecial tui coupon to International CorresDondence Sch	on rates to members of the Armed Forces. ois Canadian, Ltd., Montreal, Canada.

AVAILABLE IN ALL THESE SIZES:
$21 / 4^{\prime \prime}$ Sq., 4"Sq., 4" $\times 6^{\prime \prime}$ Elip., 5" Round,
5" P. C. 5" $5^{\prime \prime} 7^{\prime \prime}$ Elip., $6^{\prime \prime}$ P. C., $6^{\prime \prime}$ Auto, $6^{\prime \prime} \times 9^{\prime \prime}$ Auto, $7^{\prime \prime}$ Auto, $8^{\prime \prime}$ P. C., 10" Round, 12" Round

$$
\text { Model 4A } \$ 5.00
$$

For greater profits . . . quick delivery
... top quality, order your Permoflux 'Champion" speakers from your distributor today.
From one of America's leading manufacturers of quality speakers for original equipment comes the announcement of the new Permoflux line of "Champion" permanent magnetic speakers.
"Champion" speakers are equipped with unique universal mounting brackets and tapped yokes for ease of installation in any position. Mounting holes and transformer mountings are standard RTMA. Voice coil impedance $3-2$ ohm on all "Champion" speakers. (Except 12R-8 which is 8 ohms.)

Inquire about Permoflux's Complete Royal Blue Line $6^{\prime \prime}$ to $12^{\prime \prime}$ Speakers and send for the new ottractively illustrated cotalog "Permoflux Royal Lines No. J202."

guides are supplied free by distributors.
Clarostat Mfe. Co., Dover, N. H., assigned members of its sales and technical statf to attend a meeting of the Radio Technicians Guild in Boston. Demonstrations of the company's products were given and the service technicians attending were presented with Clarostat's "TV Contiol Replacement Manual," and other literature.

New plants and expansions

General Electric announced that it will triple the facilities of its Electronics Laboratory at Electronics Park, Syracuse, N. Y. The move will expand facilities for research and development of electronic military equipment.
Westinghouse Electric announced plans to build an electronic tube manufacturing plant on a 70 -acre site in Bath, N. Y. The factory will produce electronic tubes for the armed services and for essential industries.

Business briefs

The RTMA announced that radio receiving-tube sales reached an all-time high of $44,413,146$ in March. Total for the first quarter of 1951 was 118,277 ,243 , of which 22% were replacements

The RTMA also reported that 84% of the $1,822,793 \mathrm{TV}$ picture tubes sold in the first quarter of 1951 were rectang ular. 94% were 16 inches or larger.

RCA Victor Division reccived a Certificate of Co-operation from the Economic Co-operation Administration for the technical assistance furnished to peoples of Marshall Plan countries.

Utah Radio Products Co., Inc., was formed in Huntington, Ind., as a wholly owned subsidiary of Newport Stee] Corp. The company will make radio speakers and allied products. A. H. Schenkel is president, F. V. Norfleet, secretary and treasurer, F W. Tower, general sales manager, and M. G. Wike sales manager of the Jobber and Industrial Division.
RADIO \& TELEVISION SET PRODUCTION

-end-
RADIO-ELECTRONICS for

LOAD-CHEK for thr first time makes it pos-ihle for every technician to wilize what is perhaps the simplest and quickest of all service mothods-Servicing by Power Consumption Veasurements.
Power consumplion measurement has lanq been proved hy auto-radio servicemen as a rapid method of localizing tronbles in anto radios. But Triplett's new LOAD-CHEK is the first Wattmeter to be produred at moderate cast, and with the proper ranges, to bring this short-cut method within the reach of pierv radio and TV service man.
Hasis of the IOAD-CIIEK method is the tat or labrel on every radio and TV chassis which show- the normat power consumption. The following examples arconly wo of many time-saving uses of this new instrument.
LOCATING A SHORT-The chassis tag may show su normal eonsumption of 225 Watts. Simply plup the poner cord of the chassis into LOAD-CIIEK (there are no loose ends to connect or be in the way). Note the reading which should be possibly $3 \overline{50}$ Watts. By removing the
rectifier tube you can determano an once which side of the lube the short is con. With a soldering iron and long-nosed pliers you can theoth finmogh the chassis. focate and correct the trobithan whomot having to lay donn tools or to chech witly tead wires!

REPLACING BURNED OUT RESISTORS-With the chassis lo be repaired plupged info a LOAD-6HEK MODEL 660. note the wattage reading willighe hurnod out resistor eircuit open. Now replate the resistor. Should the incriase in watts be graatac planab fhat of the resistor rating being installed, it indivalles that an extra load has caused the trouble whigh has not been cleared.

LOAD-CHEK is madr-lo-order for fine busy service man and can help stop co-tly "ranme lback" repair jobs. It's a profit-maker becance it ba timme-Saver. And at its moderate cost LOAD-CHEK ran line wandard equipment on every service bench. A_{y} allf facons, inspect this versintile instrument at : ©ur disimibutor and place your order. for under prosent cannelibiams we must fill all orders on a basis of "First (amma, First Served."

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

SEE MODER 660 LOAD-CHEK AT YOUR DISTRIBUTOR'S

$\mathbf{N}_{\text {owork in electronics is tougher on test equipment than the manufacture }}$ of quality television sets. Every week, every day, set production is pushed to ever greater volume. accelerated to ever faster pace-with no interruptions tolerated. Yet tests must be held to highest precision, costs must be kept to absolute minimum.

At the many vital testing positions along the production line of the great Tele-King Corporation-day after day, hour after hour-EICO instruments stand guard. From engineer to production chief to line tester, the men at Tele-King know that for speed, precision and utmost dependability, at maximum economy, they can always count on EICO instruments.

From coast to coast, in one famous TV factory after another, EICO instruments again and again prove their superiority. The top-flight TV set makers have discovered-just as over 70,000 servicemen have learned-that for the industry's greatest instrument values, at the industry's lowest costsit's EICO! EICO line! Each EICO product is jam-packed with unbelievable value. YOU be the judge-compare EICO at your local jobber today-and SAVE! Write NOW for free newest Catalog 7-C.

FOLLOW THE LEADERS...INSIST ON EICO!

NCY 950X COND -RE). COM ${ }^{3}$ RRIDCE KIT $\$ 79.5$ Wired $\$ 29.95$

New mo40k batter Eum XIT 5.95 Wir?d 33495

(\forall mod only) \$6.9?

Before you buy any higher-priced equipment, be sure you look at the
New ?? K I TM KIT $\$ 25.95$

Hew ti5t ! SCOPE KIT S44.95 rrtc $\$ 79.95$

145K SGG P-GER XII $\$ 19.95$
New 315K DELUXE SIG. GEN. TUBE TESTER KIT $\$ 34.95$

SERVICE BOMBSHELL

|N OUR June issue, page 12, we reported briefly that Western Union was sponsoring a new subsidiary, Western Union Services, Inc., which will soon mbark in servicing various manufacturers' television receivers throughout the country.
Immediately after Western Union made this announcement late in April, a fierce storm broke over the entire servicing industry, individual service contractors and service technicians' associations denouncing Western Union and Allen B. Du Mont Laboratories, Inc., the first manufacturer to make a contract with Western Union. ${ }^{*}$
In many localities in the United States the announcement acted like a bombshell. Many of the industry's spokesmen felt that with such a powerful competitor in the business, the radio and television servicing industry was threatened with complete annihilation. The parts industry was no less disturbed. Its spokesmen felt that with such a powerful new competitor in the field, jobber and dealer parts people might be put out of business hecause the new competitor was powerful enough to buy directly from the parts manufacturers, eliminating the wholesaler, jobber, and distributor.

Radio-Electronics magazine, which for over 20 sears has sponsored and in many cases represented the service technician, can readily understand the disturbance that a new and powerful competitor could create.
We accordingly thought it apropos to get all the facts in hand before taking sides in the controversy.
After digesting reams of pros and cons we decided to submit a questionnaire to Western Union, which we did late in May. Here are the questions:

1. How soon will Western Union Services start active servicing? 2. In what cities or section is this service available: 3 . Dies the Western Union Services intend to have servicing stations nationally all over the U.S.? 4. If experience shows the plan successful. about how soon is it expected that the service may be expanded to cover larger areas, or the nation as a while? 5. Will the Western Union Services do only trictly servicing work, or will they also have stores where television sets, radio sets, and parts are sold? 6. Will Western Union Services make only servicing calls, or will they also receive at their stores sets for rejairs left by customers? 7. How many people does the Western Inion Services If so, how do you charure . Have you determined a price acale 10 rustomers? If so, how do you charire (hour late, or how)?
Western Union promptly answered, not question by question, but in a general letter signed by their vice president, S. M. Barr. Here is the reply:
H. Gernshack, Editor,

Radio-Electronics
New York, N. Y.
Replying to sour letter of May I8 concerning Weatern linion Services inc., there is litile further we can add at this time as to our future plans inc., there is litite further we can add at this time as to our future plan beyond what you already have printed on page 12 of your June issue.
Western Union Services Inc. is now in operation in its pilot service Center in East Orange, New Jersey, where it offers installation and maintenance service on contract or call which. for the present, is limited to Du Mont telesets. The price scale is uniform with present Du Mont charges as indicated in vour June issue. Repair service will be done charges as indicated in your June issue. Repair service will be done by the patron or the amount of repair needed. The Company has no in tention of engaging in the sale of television sets. radio sets or parts and plans to confine it self strictly to servicing activity, providing such parts as are needed in making repairs.
The approach to this problem is that of a long range activity on a

[^2]national seale, but it is ton esply at this date to forecast the rate or the timing of expanded operations. I trust this rives you the picture we have with respect to this new service.

Wextern Union Services, Inc.
Signed, S. M. Barr
If Western Union Services, Inc.. is vague on some of the points raised, the reason probably is that their policies have not yet sufficiently jelled for the new corporation to know their exact future plans.

It should be readily understood that the present management of Western Union Services, Inc., is not radio or television minded, having had no previous experience in the field. The management is chiefly composed of communication people. That means they will have to learn the business, which they cannot do overnight.

While we can sec the future implications to the servicing industry as a whole, we feel-after consulting many people in the field-that the Western Union threat is by no means as acute as first pictured by some of the spokesmen of the servicing industry.

Most of them admit freely that it is the radio servicing industry's own fault that outside interests are now being lured into their field. Since the early 20's the service technicians, independent or employed, have never been able to get together and form a national organization through which they could become recognized all over the country. Instead the various factions fought each other continuously. When well-meaning organizers tried to launch a national association the movement always failed.

This was also true of the writer's former organization "The Official Radio Servicemen's Association" sponsored by this magazine for several years during the early 30 "s. lt proved impossible to make the various local chapters cohere and this was the case also with the RSMA and other attempts made in the past.

Western Union's so-called threat may conceivably prove a blessing in disguise. We do not at all feel that the radio servicing industry will be hurt. On the contrary we do believe that the new competition will bring the various factions together as nothing", before ever could do. It will be a powerful incentive to clean house, throw out the irresponsible radio technicians-who now abuse the public and give the entire business a black eve-and then set up a live and vigorous national servicing body.

Radio-Electronics does not helieve that Western Union will put the servicing industry out of business-they may have hard sledding themselves for some years to comewhile local service organizations will he in a position to do the work better and cheaper than any big unwieldly body.

BUT THE LOCAL ORGANIZATIONS MUST FIRST CLEAN HOUSE AND RY CONCERTED ACTION PROVE TO THE PLBLIC THAT THEY DESERVE ITS CONFIDENCE.

Perhaps we can do no better than quote Mr. Mort Farr, veteran Upper Darby, Pa., servicing retailer and president of the National Appliance and Radio Dealers Association:
"The new Western Union subsidiary inn't likely to be as tough a come petitor as the fly-by-night operators and serew-driver mechanics. It will be a legitimate operation, with a hig overhead. The company will probably hire qualified help and won't be able to cut prices dangerously low

The Telecar system as it might be applied to a city of moderate size. The three unattended stations serve nine Telecars.

Telecar Speeds Telegrams

The modern telegraph messenger is facsimile-equipped

By FRED SHUNAMAN

THE observer is occasionally struck by anachronisms in the march of scientific progress-vestiges of the pre-machine age which survive in this era of electronics and nucleonics. One of these is the messenger-boy system of delivering telegrams on foot, by bicycle, or occasionally in a car. Highspeed mechanized networks are in use today through which telegrams flash from origin to destination without manual retransmission at any point enroute. There are facsimile systems capable of transmitting thousands of words per minute; radio links to remote parts of the world; carrier systems, and many other techniques. These have so speeded up telegraph service since the time of Morse that the inventor would hardly believe the present system possible.

In spite of these advances the delivery system-up to a short time ago -was strongly reminiscent of the days of Morse. Since 1925, printing telegraph machines in large business houses, and, more recently, several thousand small facsimile (Desk-Fax) machines installed right on the business-man's desk, have pretty well solved the problem for large and medium-sized businesses. But for the small business and in residential areas, pick-up and delivery of telegrams-even by auto and motor bike-is still the weak spot in the telegraph service.

A method of climinating this weak spot in our communications system has now been worked out. Already in Bal-
timore telegrams are being handed to recipients sometimes within a minute of the time they reach the city telegraph office. As the remaining "bugs" are ironed out of the system it will no doubt be extended to other parts of the country.

The Telecar

The device that will take home telegram delivery out of the 19th century is the Telecar, a station wagon equipped with a facsimile telegraph receiver and chauffered by a uniformed WU telegraph messenger. Depending on point of view, it is either a radio-and-fac-simile-equipped Western Union messenger or a roving branch telegraph station.
Telecars are now cruising the streets of Baltimore. With the exception of messages for the downtown business section, most telegrams received in that city are delivered by them. A telegram destined for a section of the city is routed to one of the Telecars in that territory and is received by its facsimile equipment without the driver's aid. It will even be received if the driver is temporarily absent from the car.

As soon as the telegram is finished and the Western Union messengerdriver, already cruising in his assigned area, sees the address on it, he drives immediately to that point and delivers it. He waits for an answer which he can radio back to the central office by phone. The cars are equipped with
radiophone transmitters and receivers. The car radiophone can also be used for receiving instructions from the telegraph central office, except for the time when a telegram is actually being received.
To the radioman the idea seems a good one, sound, reasonably straightforward and simple. Thus thought also the engineers of Western Union. But the usual "bugs" were discovered during "reduction to practice," and the present system is the result of several years' experimental work.

How it operates

All the messages are sent from the central telegraph office in the heart of Baltimore. Messages destined for the business district immediately surrounding the station are handled direct by printer, facsimile, or messenger. Those for the Telecars are transmitted by wire to one of four unattended transmitting and receiving stations which are placed in a quadrangle round the outskirts of the city. They operate in the $30-50 \mathrm{mc}$ range.

The actual facsimile transmitting equipment is standard or modified Telefax apparatus, familiar in many business offices. The messages, as received on printers at the main office from all parts of the nation, are put on vertical cylinders which revolve in front of a phototube. The output of the tube, modulated by the message, is amplified and inverted.

The reason for inversion is that since the light paper of the telegraph blank produces more current in the phototube than the dark letters, the message is originally a negative. Better results in transmission and reception are obtained by making it a posi-tive-with the black letters producing the stronger signals and the light background remaining at a low level. A further advantage is that the received telegram is a positive instead of a white-on-black negative that would look unfamiliar to the average recipient.

The amplified signal is routed by wire to one of the four unattended stations, each of which has one to three Telecars allotted to it. The station is normally in a receiving condition, awaiting any messages from the Telecars. The "preamble" of the telegram contains signals which turn on the transmitter and switch the antenna from the receiver to it. An audio calling tone is then transmitted for two seconds to select the desired car. After the 2 -second tone, a 2 -second pause gives the car's relay equipment time to turn on the recorder. Pulses are sent to synchronize the Telecar with the transmitter, and the message is recorded.

As soon as the message is concluded, the car recording equipment is shut down automatically and the receiving equipment reverts to its stand-by condition. The unattended station is also automatically switched from transmit to receive, ready to pick up any query or message from the car.

The mobile equipment

Each Telecar is fitted up with a modified RCA CMV-2A transmitterreceiver. Its transmitter section supplies 30 watts of phase-modulated signal to transmit replies, service messages and inquiries to the unattended stations. Its receiver has an output of 1 watt.

The receiver is mounted near the rear of the car. The equipment directly ahead of it in a cabinet located behind the driver includes a power pack, a standard frequency generator, a recording amplifier, and a relay bank and selector. (See page 23 for schematic). The recorder sits beside the driver.

The recording unit

The recorder is a modified Western Union 808 unit. The telegram is "printed" in black on a yellow (Teledeltos) paper with a silvery, conductive back. The paper is fed into the recording position from a roll. When in position to record, its edges rest around two circular flanges which form it into a cylinder, down the center of which the stylus assembly travels while the rotating stylus inscribes its message. Dark marks are made on the paper whenever an impulse from the recording amplifier supplies a pulse of voltage to it.

The carriage assembly is made to travel by a threaded lead screw, against which a threaded "half-nut" is brought
into engagement by a relay-actuated solenoid when the carriage is to start in motion. Other relays provide that the stylus start in exact synchronism with the beam of light scanning the telegram at the transmitter. Still other equipment is provided to eject and cut off the telegram when complete, and even to warn the operator when the roll of telegraph blanks is running low (low tape switch).
The most important equipment is that which selects the designated Telecar for a given message, puts its recording equipment into action, and synchronizes it with the transmitter. This is the relay bank and selector unit.

Less dramatic, but equally necessary are the other sections of the apparatus already mentioned. Radio men will find the recording amplifier a reasonably standard unit. Its most interesting feature is the frequency doubler. Doubling the frequency of the Telefax signals provides more definition at the recorder while avoiding the difficulties that would be encountered with wideband circuits in the radio transmitting and receiving apparatus. The signal to noise ratio is also improved.

Following the frequency doubler is a Western Union filter designed to trap out all but the desired Telefax signals, and a balanced-to-ground push-pull amplifier, with its output connected directly to the receiving stylus.

One of the Telecar fleet in Baltimore.
The power pack consists of two dynamotor's which supply power to the recording amplifier and the standard frequency generator, and a vibrapack which supplies a.c. for the motor driving the carriage assembly. All the equipment, including the recorder, is powered from a single 6 -volt battery which is charged from a high-current alternator-rectifier arrangement. The primary source of power is, of course, the car's engine.

The motor which rotates the stylus is driven by a special standard-frequency generator, which is a 60 -cycle multivibrator controlled by a 240-cycle tuning fork. The output, furnished at exactly 60 cycles by a pair of 6 V 6 's, keeps the recorder stylus in synchronism with the scanning beam on the cylinder of the transmitting equipment. The latter is also powered from a standard frequency generator. All that is necessary is to assure that the beam and stylus start in unison.

Selecfor and relay bank

The recorder is started and synchronized by signals from the receiver which branch off to the selector just before the frequency doubler. These leads carry not only the $1-, 2-$, or $3,000-$
cycle tones which select the desired car but also the pulses that bring the recorder into step with the transmitter and start it at exactly the right instant.

The selector is a resonant circuit made up of a Western Union 1001-A coil and any one of three capacitor combinations which tune it to any of three frequencies. They are selected with a switch which also connects the resonant circuit to the following' amplifier through a coupling capacitor of suitable size for the frequency.

At the beginning of each message, a 2 -second tone of one of the three frequencies is transmitted. It is picked up by the car receivers and-on the selector tuned to it-is amplified through the two halves of the 6.J6. Relay LR in the plate circuit of the GJ6's second triode then closes, charging an $8-\mu f$ capacitor through its contacts 2 and 3 . When the 2 -second signal stops, contact 2 drops back against contact 1 and the capacitor discharges, closing relay PRI.

The relays click

Thus begins a series of events which lasts another two seconds and prepares the equipment to start recording the telegram. Relay PRI, through its various contacts, turns on the tube filaments in the recording amplifier and supplies plate voltage to them. It also starts the vibrapack through its 3R and 4 R contacts and at the same time actuates the phase magnet solenoid.

As the vibrapack starts to supply power, relay AC pulls up. Its contacts 1 L and 2 L supply current to the halfnut solenoid in the recorder, causing' the half-nut to engage the lead screw. The carriage starts to move. Contacts $1 R$ and $2 R$ supply voltage to the standard frequency generator which operates the stylus motor. The stylus motor rotates only till the stop on its shaft contacts the dog brought up against it by the phase magnet, and there waits for the phasing pulse that will release it.

Two seconds after the end of the tone signal, short phasing pulses are sent. Relay LR follows them and thus charges and discharges the 8 -uf capacitor. Meanwhile the carriage is moving forward. When it has gone far enough to release the phase lock switch and thus clear the short placed across relay PH's coil by contacts $1 R$ and $2 R$ of relay PRI, the discharge from the capacitor closes the contacts of PH . This releases the phase magnet and causes the recorder stylus to start in step with the revolving cylinder at the transmitter.

Recording then starts, and continues till the carriage reaches the end-ofmessage switch and opens its contacts. This starts a series of actions involving relays PRI, PH, and R, which cause the completed telegram to feed out and be cut off by the knife. The equipment then returns to the standby state, ready to receive another telegram.

This is Pow generator ignal Generator wered by Buzzer
 Filament and plate are both fed by tueo flashlight cells
 By JOHN A. DEWAR

THIS small signal generator is useful on outside calls and in locations where a.c. power is not available. It is unusual in that it uses a smali high-frequency buzzer as a vibrator for the plate supply, thus eliminating the cost, weight, and bulk of a B-battery. Since the total plate and filament consumption is only about 200 ma, two $1^{1 / 2}$-volt flashlight cells last a long time and their replacement cost is small.

No output attenuator or coupling was found necessary since the generator radiates sufficient energy to put a

Note that the power supply is shielded.
good signal into the receiver. Radiation is also directional, and excellent attenuation can be accomplished by varying the angle and distance between generator and receiver. The control, in fact, is better than most potentiometers provide. The directional characteristic makes for simplicity and the elimination of external leads.

L 1 is the primary of a standard broadcast antenna coil; L2, the secondary, is phased so that the tube will oscillate. L3 is a coil from a $460-\mathrm{kc}$ i.f. transformer which was placed on the form with the antenna coil. The generator is designed to cover two bands, and L1 provides the feedback for both. C1 and C2 are sections of a small 2-gang condenser. One section is used to tune L2 for the broadcast band (540 to $1600 \mathrm{kc})$. The other section is connected across L3 so that both sections are in parallel to cover the i.f. range from 150 to 600 kc .

A midget output transformer is used to step up the a.c. for the plate supply and provides 100% modulation at the buzzer's audio frequency. C3 acts as a buffer capacitor and is necessary to cut down high-order harmonic peak voltages. It is advisable to shield the power supply from the r.f. section to eliminate spurious radiation.

To keep power consumption low the buzzer should have a coil resistance of 20 ohms or more. The common connection between the coil and reed is connected (in most types) to the buzzer casing, and it is necessary to insulate it from ground and make one side of the voice-coil connection to the shell. Mount so that the adjusting screw is accessible and can be set for best operation.

The generator case was made from thin, soft aluminum which can be bent without cracking, and the parts mounted directly on it. The dial con-
sists of a semicircle of paper glued to the panel and hand calibrated, either from stations of known frequency or from another signal generator. A coat of lacquer will prevent the dial from soiling with use.

The over-all size, $6^{3 / 4} \times 3 \times 21 / 2$ inches, can be reduced further by using a midget tuning capacitor and penlite cells. Short wave bands were not included, for the sake of simplicity and also because the writer prefers to use WWV for spot frequency checks.
On repair calls sometimes, this signal generator may enable the radio technician to decide whether to "pull" a set and carry it down to the shop. In some cases, alignment can be checked by attaching a VOM to the voice coil and feeding a constant signal in from the pocket generator.
It is important to stabilize the frequency of this unit before any extensive work is done. This can be done by allowing it to warm up before calibrating it against a known broadcast station's frequency.

Materials for signal generator

1-replacement broadcast antenna coil: 1-cail from 450 -to-460-kc i, transformer: 1 -midget output
 capacitor: 25 uluf: volts: 1-resistor, 22,000 ohms, $1 / 2$ watt: ; 1 switch. s.p.s.t. tooggle: 'I-switch, s.p.d.t., slide typei Iminiature socket, 7-prong: 1-3Q4 tube , 2-flashlight cells, I1/2-volt; hookup wire, dial, hardware, etc. Note: Use ont. coil with low imped. primary

A simple oscillator circuit is used. -end-

BC-453 as Service Aid

By JOSEPH ZELLE*

T-HE BC-453 receiver, long popular among radio amateurs for highly selective reception, also makes a handy instrument around the radio service shop. This little command set tunes from 190 to 550 kc , covering the most common intermediate frequencies of superheterodyne receivers. It works as a kind of low-frequency meter and makes i.f. checking very easy.
It is good policy anyway to make a quick check of the operating frequencies of every receiver that comes in for servicing. Hardly any receiver escapes some tuning or adjusting, and fundamental misadjustments thus can be spotted instantly.

To make the check, connect a lead from the $\mathrm{BC}-453$ antenna post to the grid or diode plate of the second detector of the set under test. Then tune the BC-453 until you hear the signal and note the frequency on the dial. You can interpolate the dial readings closely enough for all practical purposes because these units are very stable at such low frequencies. The BC-453 may be checked against known radio-range stations for calibration. The interpolated i.f. should check with the receiver manufacturer's specifications.
If the receiver is defective, the BC453 unit is useful as a signal tracer. Clip the same lead from the antenna post on the plate of the last i.f. amplifier, then the grid, and in this way work toward the antenna end of the set until the signal can be picked up in the BC-453. In this way, you can locate failure in a particular circuit with ease. Of course, the BC-453 must be tuned to the intermediate frequency of the set under test and the receiver stages must be at least roughly aligned. Secondly, the testing can go back only to the mixer or converter stage, where the i.f. first appears.

This surplus receiver is much more useful for aligning. With the signal generator feeding r.f. to the broadcast receiver at the high-frequency end of the band, connect the BC-453 to the grid or diode plate of the second detector to serve as an aural indicator. With the $\mathrm{BC}-453$ set at the correct i.f. you can be sure the i.f. stages of the receiver will be tuned to the correct frequency.

A beat frequency of 456 kc (or whatever the i.f. may be) can be produced by beating the local oscillator either higher or lower than the incoming r.f. signal. For example, at 1500 kc , either 1956 kc or 1044 kc will produce an i.f. of 456 kc . This may cause a good deal of trouble in aligning a receiver.

[^3]In most superheterodynes, the local oscillator (first detector) tunes at a frequency higher than the incoming r.f. signal (at 1500 kc in the case above). Therefore, screw the oscillator padder tight. Then with the test setup in operation, unscrew the padder screw slowly until the i.f. signal is heard in the BC-453. This will be produced by the low-frequency side of the oscillator (or 1044 kc of the above example). Unscrew the padder still farther now, until the signal again appears in the $\mathrm{BC}-453$. This is the result of the higher oscillator frequency (or 1956 kc of the example). You may be able to find only one signal, which ordinarily will be the correct setting for the oscillator.
The correct frequency for the oscillator is important for tracking. In fact, if various stations do not appear at their proper places on the receiver dial, either the i.f. or the oscillator frequency is wrong. With the correct i.f. use the frequency for the oscillator which gives better tracking. In some superheterodynes only one correct beat frequency can be tuned with the oscillator. In that case tune the oscillator to produce the required i.f. After the i.f. and oscillator frequency have been determined and tuned, trimming and padding can be done with the assurance that the receiver will track correctly over the full broadcast band.
A signal generator is not even necessary for this tuning process. First connect the BC-453 to the second detector as before, and set its dial to the required intermediate frequency. Next, tune the receiver to be serviced to the frequency of a known local broadcast station (preferably around $1,000 \mathrm{kc}$). Then tune the oscillator until the particular broadcast station is brought in on the BC-453. Should the receiver under test be so badly out of tune, that the station cannot be heard (assuming the receiver is not defective) move the lead from the BC-453 up a stage or two toward the mixer, and again try tuning the oscillator to the correct frequency. Then move the clip back, stage by stage, toward the second detector and tune the stages each time for maximum response. With the various stages now tuned so that sufficient signal is available in the final i.f. stage, the whole set can be aligned as described before. Trim and pad at the high and low ends of the dial, using local radio stations as r.f. signal sources.
When making the final tuning adjustments, remove the BC-453 coupling lead, since it loads and detunes the circuit to which it is connected. Final alignment
can be made with the serviced receiver's own audio system.
This handy service gadget is reasonable in cost on the surplus market. It requires 24 volts for the filaments and 250 volts for the B-supply. By connecting all the tube filaments in parallel, 12 volts will supply them. In some cases, where complete power and 6.3 -volt filament supply is available, it may be better to replace the tubes with equivalent 6.3 -volt types. Some changes in bias circuits will be necessary in the latter case.
Besides serving as an i.f. checker, the BC-453 receiver offers 360 kc of radio stations, mostly radio range and weather, on frequencies below the broadcast band.

```
-end-
```


POLYMETER IMPROVEMENT

The radio man who owns a type 134 Sylvania Polymeter can improve its performance quite a bit by adding a shielded d.c. test probe and jack. The shielded probe is a useful device for making dynamic tests in which critical d.c. voltage measurements must be made without detuning the receiver under test.

To make the addition, mount a midget open-circuit phone jack on the Polymeter panel. There is plenty of room above either the ac volts jack or rf volts jack. Wire the high terminal of the jack directly to the ma-dc volts jack inside the instrument. Use ordinary unshielded hookup wire. This connection will not interfere in any way with operation of the MA-DC volts pin jack, which still can be used for milliampere measurements and for d.c. measurements when shielding is not required.

Ordinary microphone cable may be used for the shielded test lead. Inside the shielded test prod, connect a 1 megohm, $1 / 2$-watt carbon resistor as close as possible to the probe tip. Connect the other pigtail of the resistor to the center conductor of the shielded cable. Terminate the far end of the cable with a standard phone plug. Connect the center conductor of the cable to the ball of the plug, and the cable shield braid to the plug sleeve. The figure shows the circuit inside the test prod.-Rufus P. Turner

After two hours-Let's try a new approach. Get a different slant ou it.

Six hours have passed swiftly. Cause of fading still mot tracked to its lair!

kn
kl
kVERY radio repair technician knows that often more time is spent repairing a set than can be charged to the customer. But here is the tragic tale of the inexperienced repairman who made the fatal mistake of telling his customer that a 50 -cent capacitor was the cause of the trouble. Our hero has the frustrated feeling-but of course he'll know better next time.

At last! A bypass capacitor that tests O.K. but which works only occasionally.

The customer is burned up too. "You got some nerve charging five bucks for that."

Our hero is slightly singed also. There must be a better word than frustration.

Tube substitutions

1X2-A (High-voltage rectifier). Replacement with a 1 B3-GT will improve results in many cases (maximum and average peak plate currents of a $1 \mathrm{~B} 3-$ GT are, respectively, 17 ma and 2 ma as compared to 10 ma and 1 ma for the 1X2-A). An adapter to change from $9-$ pin miniature to standard octal socket is required (Fig. 1 to Fig. 2).

5AZ4 (Low-voltage rectifier). Electrical equivalent of 5Y3-GT. Replace socket or use adapter.

5U4-G (Low-voltage rectifier). Directly interchangeable with 5 T 4 . A $5 \mathrm{Z3}$ can be used with the proper adapter (4 -pin to octal) ; rewire connections from Fig. 3 to Fig. 4. A 5R4-GY may be directly substituted if available. A 5X4-G may be used with an adapter (the socket can be rewired to accommodate either the 5U4-G or 5X4-G by tying pin 4 to pin 3, pin 6 to pin 5, and pin 7 to pin 2). Do not use a $5 \mathrm{~V} 4-\mathrm{G}, 5 \mathrm{~W} 4,5 \mathrm{Y} 3-\mathrm{GT}$, or $5 A Z 4$ to replace a $5 \mathrm{U} \cdot \mathrm{t}$-G. Socket connections are the same, but these types do not have sufficient current ratings. Early tube failure will result.

5V4-G (Low-voltage rectifier). Directly interchangeable with 5Z4-GT, and 5Y3GT in circuits where maximum ratings of replacement are not exceeded. An adapter can be used with types $5 \mathrm{Y} 4-\mathrm{G}$, or 80 .

6 AC7 (Sync stripper, 2nd video amplifier, or reactance tube). Directly replaceble with 6SH7. A 6SJ7 can be used as a direct replacement on an emergency basis in most sync stripper and 2nd video circuits. Operation may or may not be satisfactory in horizontal a-f-c circuits (horizontal discriminator transformer can usually be adjusted to work satisfactorily). It may be necessary to insert a 700 -ohm resistor in series with original resistor for correct cathode bias. Although the gain will be reduced by substituting the 6SJ7, operation in strong-signal areas should be satisfactory. (Fig. 6).

6AG5 (Video i.f., sound i.f.). Directly replaceable with $6 B C 5$. Check effect of interlectrode capacitance differences on alignment, especially in video i.f. chain. Caution: The 6AG5, 6AK5, and 6BC5 have suppressor and cathode tied together internally and then connected to pins 2 and 7 (Fig. 9). The 6AU6 and 6BA6 have cathode brought out to pin 7 and suppressor to pin 2 (Fig. 8). Just to be different the 6 CB 6 has cathode to pin 2 and suppressor to pin 7 (Fig. 7). If the circuit in which these tubes are to be used has cathode and suppressor directly grounded, no trouble occurs and all of them can be used with no socket wiring change. But if cathode bias is used, look out. It may or may not be necessary to change socket connections to pins 2 and 7, depending on which tube is replacing which (and sometimes on the set manufacturer's schematics; make sure the connections on the socket
are the same as those on the diagram). A circuit check must be made before substitution.

6AG5 (Reactance tube). Try a 6 BC5 or 6BA6. (See Caution Above) Readjust discriminator transformer if necessary.

6AH6 (2nd video amplifier). Replace with a 6 AC 7 or 6 SH 7 , using an adapter or changing socket connections as shown from Fig. 5 to Fig. 6.

6AK5 (Video or sound i.f., r.f.). In most circuits a 6AG5, 6AU6,6BC5, or 6CB6 can be directly substituted. (See 6AG5 Caution.) Interelectrode and mutual conductance differences may require some minor circuit readjustments. See Fig. 9.

6 AK6 (Horizontal oscillator). Change socket or use adapter to accommodate a 7 B 5 , or $6 \mathrm{~K} 6-\mathrm{GT}$. A change in value of the series-hold resistor may be necessary.

6AK6 (Power-pentode amplifier). Replace with 6G6G and adapter if space permits

6AQ5 (Beam-power amplifier). Although its characteristics are somewhat different, a 6AR5 may be used if available, provided pin 7 of the 6AQ5 socket is tied to pin 1. A single 6AQ5 may be replaced with a 6AS5 if minimum Class A ratings are being used for the 6AQ5. An adapter or circuit changes from Fig. 10 to Fig. 12 will be required.

6 AQ5 (Horizontal oscillator). Directly replaceable with 6AR5. No socket changes necessary unless the original circuit uses pin 7 as one of the control grid terminals. In this case, it will be necessary to tie pin 7 to pin 1 on the 6AQ5 socket to maintain circuit continuity. Series-hold resistor may require changing to keep range coverage. Fig. 10.

6AQ5 (2nd video amplifier). Use a 6AR5 as direct replacement. (Check bias voltages for proper values.) Some peaking adjustments may be required in critical circuits. Fig. 10.

6A96 (Discriminator, 1st audio). Directly interchangeable with 6AT6. A 6AQ7-GT may be used if socket changes are made from Fig. 13 to Fig. 14. A 6SQ7-GT may be used with adapter if space permits.

6AQ7-GT (Discriminator. 1st audio). May be replaced with 6T8, 6S8 or 6AW7 in cases where the circuit permits. Check each case with the tube manual and set schematic and use adapter or rewire socket as required.

6 AR5 (Video amplifier). Replacement with a 6AQ5 is not recommended but may work satisfactorily in strong-signal areas. Peaking readjustment may be required. Fig. 11.

6AS5 (Beam-power amplifier, horizon-
tal oscillator). Replaceable with a 6AQ5 or 6AR r by using adapter or rewiring socket. The base connections are shown below in Figs. 11 and 12.

6 AT6 (Discriminator, 1st audio). Directly replaceable with 6AQ6. The 6AQ7-GT has the same characteristics and may be used if the 6AT6 socket is replaced and circuit connections are changed from Fig. 13 to Fig. 14. The two cathodes of the 6AQ7-GT (pins 2 and 6) should be tied together. If the above types are not available, use a 6SQ7-GT and adapter.

6AU6 (Video and sound i.f.). Can be replaced directly with a 6BC5, 6BA6, $6 A G 5$, or 6AK5 (see 6AG5 Caution). The 6 CB 6 will result in much greater gain. Addition of a tube shield, if not already in use, should be made to prevent oscillation. Solder the shield to chassis instead of riveting or bolting. This will make a low resistance joint. The 6BC5 has somewhat less gain than the 6 CBG , but will still be an improvement over the 6AU6. Single 6BA6's

Socket connections of most tubes listed.
may be used as direct replacements in sound i.f. and in r.f. stages. In video i.f. stages it is recommended that all 6AU6's be replaced simultaneously with 6BA6's in order to maintain the same degree of interelectrode changes in each stage. Slight realignment may be necessary.
When replacing the 6AG5 or 6BC5 with a $6 \mathrm{CB} 6,6 \mathrm{AU} 6$, or 6 BA 6 it may be necessary to change the value of the original cathode resistor to obtain the proper cathode voltage (approximately 1.5 volts).

Some receivers using 6AG5's, 6BC5's, or 6AU6's take the plate voltage from a 300 -volt point. When 6CB6's are used, it may be necessary to reduce this voltage by inserting a series-dropping resistor or moving the plate-supply lead to a 200 -volt point.

6 AU6 (Limiter, a.g.c.). The above substitutions may or may not work in these circuits without modifications or changes in parts values. Try substitutes in various receivers to note the effects (Fig. 8).

6AV6 (1st audio, bias clamp). Directly replaceable with 6AQ6 or 6AT6 (Fig. 13) with some loss in gain. A

6AQ7-GT, 6SQ7-GT, or 6SZ7 may be substituted with the proper adapter.

6BA6 (Sync amplifier). The 6CB6 and 6 BC 5 are replacements (see Caution on 6AG5). The 6AU6 can be used in some cases (high signal-strength locations). A 6AG5 or 6AK5 can be tried if no others are available (Fig. 8).

6BC5 (Video i.f., sound i.f.). Replaceable with 6AU6, 6AG5, 6AK5, 6BC5, or 6CB6 (see Caution on 6AG5).

6 BJ6 (R.f. amplifier). Directly replaceable with 6 BH 6 and 6 BC 6 , with increased gain and sharper cutoff characteristics. The 6AG5, 6AK5, 6AU6, $6 \mathrm{BC5}$, and 6BA6 may be used with an adapter (Fig. 7). (Note the Caution under 6AG5.)

6BH6 (R.f. amplifier). Directly replaceable with 6BJ6 and 6BC6. The substitutions listed for the 6BJ6 may be made with an adapter as stated (Fig. 7).

6BL7-GT (Vertical oscillator). Directly interchangeable with 6SN7-GT. (6BL7GT has greater gain than the 6SN7GT.)

6BQ6-GT (Horizontal output). No direct substitute. A 6BG6-G can be used if socket connections are changed from Fig. 15 to Fig. 16. If the 6BG6-G does not draw proper current, change the value of the screen-dropping resistor.

Abstract

These substitutions hove been made with sets having parallel.connected heaters in mind. Heoter currents may differ considerably, but that should make little difference unless a set is running dangerously near its maximum transformer capacity, or unless several heavy-current filament tubes cre inserted in the same set.

Where filaments are connected in series, it is important to check the heater current of any tube to be substituted. If a lower-current tube is available, it can be shunted by a resistor. If the tube draws a higher current, substitution is less likely to be practical, although in extreme cases a resistor shunting all the other heaters may be used. In general, when the tube ovailable for substitution has not the same current and voltage rating as the one to be replaced, the substitution becomes a special iob and must be checked carefully against the conditions of the giver case. Use your tube manuall

Many other combinations or tube substitutions may be possible. Experiments with various tubes in different circuits in the course of servicing will show just how for substitutions may be carried. Remember, in closing. olways to note ony tube or port replacement on the chassis inside the cabinet for future reference.

Our thantis to RCA Tube Division for the photographs of tubrs

6W4-GT' (Half-wave rectifier; damper). No direct replacement. The 6X5 may work in emergencies if both plates are paralleled and socket connections changed from Fig. 20 to Fig. 21, or an adapter is made up. Paralleling the 6X5 plates will allow a peak plate current of approximately 410 ma as compared to 600 ma for the 6 W 4 . Heater currents are different- 1.2 amp for the 6 W 4 and 0.6 for the 6 X 5 .

6Y6-G (Audio output). Replace with a 6U6-GT, 6W6-GT, or 6L6. No socket changes required.

785 (Sync separator; audio output). Change socket and rewire for $6 \mathrm{~K} 6-\mathrm{GT}$ or 6V6-GT, or use adapter with these tubes.

7 C5 (Vertical or horizontal sweep). Change socket and rewire for $6 \mathrm{~V} 6-\mathrm{GT}$ or $6 \mathrm{~K} 6-\mathrm{GT}$, or use adapter.
$7 F 8$ (Vertical and horizontal sync amplifier). Try a 7F7, 6SL7GT, or 6SN7-GT. An adapter or socket replacement will be necessary. Bias voltages should be checked and value of cathode resistor changed if necessary.
connections must be changed accordingly. A 6AQ6, 6AQ7, or 6AT6 can be used with an adapter or socket replacement.

6SH7 (Pulse stripper). A 6AC7, 6SG7, 6SD7-GT, and 6SE7-GT are direct replacements. Try each type and note its effect on circuit operation. It may be necessary to connect suppressor and cathode pins on socket when using 6AC7, 6SD7, or 6SE7. Types such as the 6AG5, $6 \mathrm{EC5}, 6 \mathrm{BH} 6,7 \mathrm{G} 7,7 \mathrm{H} 7,7 \mathrm{~L} 7$, or 7 T 7 will work in many cases with the proper adapter.

6SL7-GT (Vertical oscillator). Make up an adapter or rewire socket for a 7F7 (Fig. 17 to Fig. 18) or for a 6SC7 (Fig. 19) if both cathodes of the 6SL 7-GT are being used in parallel. A 6SN7-GT can be used as direct replacement in some cases. Slight changes in series-hold resistor value may be required. A 7F8 with adapter may be used if bias voltages are changed.

6SN7-GT (Vertical oscillator). A 6AH7-GT, ef8-G. or 7N7 should work with an adapter. The series-hold resistor may need to be changed. The 6AH7's heater current 0.3 amp , that of the other tubes 0.6 amp .

6V6-GT (Audio output). Directly replaceable with $6 \mathrm{~K} 6-\mathrm{GT}$. A decrease of approximately 1 watt may result. See $6 \mathrm{~K} 6-\mathrm{GT}$ for bias note.

7W7 (1st and 2nd sound i.f.). Replace with a 7V7 or 6AB7 (adapter or rewiring required).

7 Y4 (Low-voltage or bias rectifier). May be replaced with a 7 Z 4 . (7 Z 4 has greater current-carrying capacity than 7Y4.) A 6 X 4 or $6 \mathrm{X}^{5}$ with adapter may be used. The socket connections of the 6 X 5 are shown in Fig. 21.
$7 Z 4$ (Low-voltage or bias rectifier). Do not replace with a 7 Y 4 if total current drain exceeds 70 ma ($7 \mathrm{Z4} 4$ supplies 100 ma). A $6 \mathrm{~W} 4-\mathrm{GT}$ which supplies 100 ma but which has a heater current of 1.2 amp. can be substituted if the receiver power transformer is able to supply this.
$12 A T 6$ (Discriminator, 1st audio). Replace with a 12SQ7-GT and adapter.
$12 A U 7$ (1st and 2nd video amplifier; or vertical oscillator).Directly interchangeable with 12 BH 7 (12BH7 has greater gain). A 12SN7-GT for seriesconnected 12 AU 7 heaters) or a 6SN7GT (for parallel-connected heaters) can be used by changing the socket where space permits or by using an adapter.
35W4 (low-voltage rectifier). Replace with $35 \mathrm{Z} 5-\mathrm{GT}$ and acapter.
50B5 (Beam-power output). Replace with 50 L 6 (adapter or socket changes). -end-

TV Field Strength Meter is Helpful

Correct installation of an-
tenna is insured by using
this sensitive instrument

By H. O. MAXWELL.

The meter has a sensitivity of ju !u.

|N any locality, the performance of a TV receiver is no better than that of its antenna. In primary signal areas, the signal strength may run into thousands of microvolts yet the picture may be poor if the antenna is not correctly installed and oriented. In some cases, a slipshod installation may get by if the receiver needs only a small part of the available signal to produce a satisfactory picture. In fringe and weaksignal areas. the set ne ${ }^{\wedge}$ ds every available microvolt of signal for good picture reception.

Selection and orientation of the antenna is greatly simplified by using a TV field-strength meter. The instrument should tune to all TV channels and should have sufficient sensitivity to indicate slight changes in the level of the signal applied to it.

The Simpson model 488 TV fieldstrength meter meets these requirements. It is essentially a small a.c.operated superheterodyne receiver which tunes to the video carrier frequencies of the TV channels and indicates the signal strength in microvolts on an open-face $41 / 2$-inch meter. The instrument is housed in a gray hammerloidfinished round-cornered cabinet 11 inches wide, 8 inches high, and $81 / 2$ inches deep. The unit weighs $11 / 1 / 2$ pounds.

The circuit

The model 488 is designed around a type TV 278 Standard Coil tuner which can be used with 300 -ohm balanced or 72 -ohm unbalanced transmission lines. The channels are selected by switching in the proper coils which are housed in a turret. A fine-tuning control is provided for carrier centering.

The incoming signal is amplified by the 6BC5 r.f. amplifier and fed to the 6J6 mixer-oscillator where it is converted to 25 mc by heterodyning with the signal from the local oscillator (see diagram). The mixer works into a 2-stage i.f. amplifier peaked at 25 mc the \cdot video carrier frequency. Peaking
the amplifiers provides greater gain than can be obtained by stagger-tuning as in TV receivers. Peaking is permissible because the service technician is interested in carrier strength and not so much in sideband width.

Following the second 6AU6 i.f. amplifier is a 1 N34 video detector which has a meter as its load. The detector removes the carrier and the sync pulses appear across the meter. The tips of the pulses are always at the same level so the voltages which they develop can be used to indicate carrier strength.

The field-strength meter is calibrated so that a $50-\mu \mathrm{v}$ signal at the antenna terminals produces a full-scale deflection on the meter when the multiplier switch S-2 is in the X1 position. Full-
seale readings are $50,500,5,000$, and 50,000 microvolts when $\mathrm{S}-2$ is set for $\mathrm{X} 1, \mathrm{X} 10, \mathrm{X} 100$, and $\mathrm{X} 1,000$ respectively.

S-2 has three sections. Two of thes: vary the supply voltages for the tuner and i.f. amplifier. The third shunts the meter to insure accuracy on the X 10 , X 100 , and $\mathrm{X} 1,000$ ranges. A s.p.i.t. toggle switch S-1 controls the grid bias on the r.f. amplifier tube. Bias is minus 2.35 volts on the low band. It is reduced to 1.5 volts on the high band to provide additional gain. Meter accuracy is maintained under valying line-voltage levels by supplying the 6AUG i.t. tubes from a point stabilized at 150 volts by a 0A2 voltage-regulator tube.

The third 6AU6 is the audio amplifier for headphone reception. It am-

The Simpson model 488 schematic shown above uses a Standard Coil tuner unit.

Hottom view of field strength meter shows turret tuner and simple wiring.

Top view of un th shows neat layout of parts and sturdy construction of frame.
plifies the detected signal and applies it to the phone jack. The phones are used to identify interference which may appear in the picture and to identify a station when its call letters are not known (see below). This feature is useful when the mete: is used in areas where it is possible to receive two TV stations on the same channel. When there is no interference on the picture channel, the vertical sync pulses will be heard as a rough 60 -cycle buzz.

The i.f. amplifiers are peaked so sharply that the atidio carrier cannot be received when tie tuner is set on the desired channel. To receive the audio carrier, the tuner must be set to the next higher channel and the finetuning control set to the low-frequency end of its range. Because there are breaks or gaps in the band between
channels 4 and 5 and between 6 and 7 , it is not possible to receive the sound carriers of channels 4 and 6 . The tuner does not tune to a frequency higher than channel 13 , so the sound carrier of this cbannel cannot be received.

The model 488 is also useful to amateur radio operators and operators of other radio equipment which operate on subharmonics of the TV channels. By setting up the meter and measuring the strength of various harmonies, the effects of traps and tuning adjustments can be stadied without making on-theair tests. Potential sources of interference can be detected and eliminated before going on the air. The meter will also prove useful when adjusting variable capacitors and inductors in filters designed to pass or reject TV frequencies.

MONEY IN TV SERVICING

By OLIVER HORNING

TV repairman Jim was up to his neck in trouble again. Two hours of chassis banging, tapping those tubes and praying for a capacitor, a transformer or something to break down, but that receiver would not act up, lose it's contrast, show a negative picture, or anything else. Jim must have felt like a dentist who had scared away a patient's pain.
"I'm beginning to think," spoke up Jim, "that there isn't a thing wrong. Who ever told you to bring it here?"
"It belongs to a lady friend," explained Police Detective O'Rourke. "You must have read about her-the D.A.'s wife whose valuable ring was stolen right in her house just yesterday. . . . The Chief has me on that case."
"Oh, I do see," exclaimed Jim. "You failed to find the ring, you don't want the Chief to suspend you, so now . . ."
"No, it's not what you're thinking," interrupted O'Rourke. "It's that six-year-old brat she has for a son . . poking his nose and fingers into everything. Says he: 'You're not Martin Liane . . . I know! You'll never find it. I know . . .!' That's all I hear; he was drivin' me nuts! I had to think of some excuse or favor to get me out of the house a bit."
"And there was really nothing wrong with this set? Just because you let me park my car in the alley is no reason why you thould. . . ."
"But, there was plenty wrong with it: Sounded like that Hopalong fellow was firing a machine gun. That rat-tat-tat was also drivin' me batty."
"So that's it! Why didn't you tell me it was only a speaker rattle? And all this time I've been using my bench speaker."

An indignant Jim hurriedly grabbed some extension leads, attached the owner's speaker and heard a rattling cone at its worst. He gave the speaker a quick glance, then picked a scriber from anong the tools on the rack behind the bench.

Poking down through the partly-torn grille cloth with the hook end of this instrument, he paused to inquire: "Why doesn't Mrs. Duffy offer a reward for the recovery of her ring?"
"Sure and she did," answered O'Rourk, " $\$ 100$ to anybody finding it."
"Not bad," remarked Jim, carefully disentangling the hooked end of the scriber from the works of the speaker, "nor would I mind buying Mrs. Duffy's brat a double-decked ice cream cone if. . . ."
"You just stopped the rattle," spoke Detective O’Rourke.
"Sure enough," said Jim, now holding a diamond-studded ring at the end of the scriber. "Who would have thought this hook would net me one hundred dollars?"

Replacing Tuners for Higher Gain and Interference Rejection

These typical tuners, used in new sets, are available for replacement purposes and can be installed easily.

By MATTHEW MANDL*

|N THE latest television receivers, among the number of improvements perhaps the most noteworthy is the exceptional gain and interference rejection of the new tuners. Added to these two features is the fact that virtually all are much more simple in construction than the older ones, and therefore are much easier to service and align. Many of these front ends are now available for replacement purposes, so the technician can improve older model receivers considerably by replacing outmoded tuners with the new. Because set owners always want to get better reception and have the latest improvements, this will be found a profitable field.

The work of installing the newer type tuners is not at all complicated. Most of the new front ends require less space than the old ones and no chassis fabrication is needed. There are only five soldered connections to make, and since the tuners are prealigned it will rarely be necessary to track them or to align i.f. stages. A variety of tuners are available, so one can easily be chosen which will match the intermediate frequency of the receiver in which it is to be installed.

Typical tuners used in present-day sets which are also available for replacement purposes are: The Standard Tuner and the Spiral Tuner.

The Standard tuner

Fig. 1 is the Standard tuner manufactured by the Standard Coil Products Company. It is used in a number of television receivers, including some models of Admiral, Emerson, and Philco. A turret-type tuner, its rotary drum holds the necessary r.f.-mixeroscillator coils for the 12 television channels. A schematic of the tuner appears in Fig. 2. The tubes used are a 6 AG 5 pentode radio-frequency amplifier, and a 6.56 double triode for the mixer and oscillator circuits.
The dashed rectangular outlines enclose the two coil sections which are switched to tune the various television channels. One coil section contains the antenna input primary as well as the coupled secondary which applies the signal to the r.f. amplifier input. The *Technical Institute-x Temple University
second coil section contains the interstage transformer (primary and secondary) as well as the oscillator winding which transfers the oscillator signal into the mixer grid circuit by inductive coupling.

The inductance of the coils, combined with the interelectrode capacity of the tubes, forms the resonant circuit for the desired frequency. All coils are preset at the factory.

Five connecting wires, each colorcoded as shown in Fig. 2, are provided to facilitate replacement. When the old tuner is removed from the receiver, its connections to the picture and sound grids, as well as plus-B, filament, and bias, must be established. The new tuner is then bolted to the chassis and the leads cut just short enough to reach the connecting points previously ascertained.

The white lead of the Standard tuner goes to the a.g.c. connection in sets having this feature, otherwise is connected to the bias terminal-for the bias in sets without a.g.c. is usually regulated by the contrast control.

When using this tuner for the conventional stagger-tuned i.f. system the bare lead is attached directly to the grid of the 1 st picture i.f. tube and the
green lead is connected to the grid of the 1 st sound i.f. tube. If, as in a few receivers, the sound i.f. is taken off after the 1 st or 2 nd i.f., the green lead is not used and therefore should be disconnected from the tap on L12. It is also omitted in intercarrier receivers. The coil (L12) can be removed entirely in such instances to prevent any absorption of sound intermediate frequen-

Fig.1-Turret-type:The Standard tuner. cies, or the 68 - μ uf capacitor can be disconnected, opening the circuit. If a $19.75-\mathrm{mc}$ trap is required, replace the 68 -u u f with an $80-\mu u f$ capacitor.

Inductor L11 is designed as the first frequency in a stagger-tuned system (usually 21.8 mc). However, it can be

adjusted over a limited range for other frequencies.
Adjustments for tracking are provided on top of the tuner, as shown in

Fig. 3-standard's tracking adjustments.
Fig. 3. An insulated loop of wire is also provided. Its terminals can be used for scope connections during the tracking process. a test point at the mixer grid, or for injecting an r.f. signal during alignment procedures. As with most modern tuners, an exposed contact panel is available at the side for r.f. signal generator connections to other points, including the r.f. amplifier grid.

The tuner is tracked and aligned at the factory. so it should not be necessary to make any adjustments except possibly a slight retouching of L11 and L12. For precise adjustment, an accurately calibrated r.f. signal generator can be connected to either the antenna terminals or the test point loop, with a v.t.v.m. across the video detector load resistor in the receiver chassis. With the generator set at 21.25 mc , tune L 12 for minimuen reading on the v.t.v.m. (Do not overload the input systemkeep signal generator output as low as possible.) Reset signal generator to 21.8 and tune L11 for maximum voltage on v.t.v.m.

Fringe-area reception

For fringe-area reception the 6AG5 r.f. amplifier tube may be replaced with a 6 BC 5 . It is directly interchangeable
with the 6AG5 and provides higher gain. Both sets of coils for the weak channel can also be adjusted to reduce coupling, thus increasing the Q of these circuits and also the gain. The spacing should be increased between the coils experimentally until the desired results are obtained, for excess spacing will again decrease gain. Bandwidth of course is reduced as the Q is raised. While both 300 -ohm and 73 -ohm inputs are available, the 300 -ohm twin lead has less loss and is preferred for fringearea reception.

The Spiral Tuner

A television front end of unusual design is the Spiral Tuner, which features continuous tuning through both the television and frequency-modulation bands. The Spiral Tuner is a product of the Mallory Corporation and is used by Du Mont and Crosley in many of their latest TV receivers, The schematic of the model used by Du Mont is shown in Fig. 4 and a photo of it in Fig. 5. It is designed to be used with overcoupled i.f. stages, with a video intermediate frequency of 26.25 megacycles and a sound i.f. of 21.75 mc . Like its forerunner. the Inductuner, the Spiral Tuner is also available for replacement jurposes and can be used with either 7 Cohm or 300 -ohm input. The output can also be modified to accommodate the particular receiver for which it is to be a replacement part. The Spiral Tuner, in its latest form, has the same general and compact external appearance as the two tuners previously discussed.
The coils are wound in spiral form and present four tuned circuits: tuned r.f. input, tuned r.f. output, tuned mixer input, and tuned oscillator. Wiping contact points move over the coils as the shaft is rotated for station selection. By shorting out sections of the resonant

Fig. 4-The schematic of the model used by In Mont is shown above. It is designed to be used with overcoupled i.f. stages with $26.25-\mathrm{mc}$ video i.f. stages and 21.75 sound i.f., and can be used with 72 - or 300 -ohm input. Fig. 5, left-l'hotograph of the tuner.
circuit coils, the sliding contact gives continuous tuning from 54 to 216 mc , which of course includes the $88-108-\mathrm{mc}$ frequency-modulation spectrum. The spiral coils are indicated in Fig. 4 as L102A, L102B, L102C, and L102D.
A 6Jk grounded-grid amplifier circuit is used for the r.f. stage, with both halves of the dual triode connected together. While the grids are at r.f. ground because of C105 and C106, the d.c. potential is ungrounded and is applied by the a.g.c. circuit of the receiver proper.
The grounded-grid type circuit isolates input and output circuits. Thus a triode can be used without neutralization. Triodes have a much lower noise factor, and the four tuned circuits of the Spiral front end give excellent selectivity and gain. The increased selectivity reduces adjacent channel interference as well as the type interference set up by FM broadeast stations.

A $64 \mathrm{~K}^{5}$ is used for the mixer circuit. and a 6AB4 tube is employed in the Colpittcoscillator. A double-tuned bandpass circuit couples the output of the r.f. amplifier to the input of the mixer stage. This provides the proper signal transfer while maintaining the desired selectivity over the entire tuning range.

As with other replacement tuners, all adjustments are preset at the factors. Tracking or alignment should not be necessary when such a tuner is used for modernizing an older receiver. The output circuit of the replacement tuner is modified somewhat from that shown in Fig. A to adapt it to the input stages of other receivers. The dotted section shows connections to the audio i.f. stage. If the sound i.f. is taken from after the first or second picture i.f. (or with intercarrier) no connection is made to the 27.75 me trap. The picture output shown in Fig. 4 is a link coupling to the grid of the first video i.f. stage.
The Inductuner is a trade name applied to the Mallory-Ware Inputunel and the Spiral Tuner by Du Mont Laboratories. Inc. Thus, the Du Mont Inductumer and the Mallory-Ware Inputuner refer to the same basic circuit.
Several further precautions should be observed by the service technician if he has to replace the front-end for one reason or another. First, make sure that the impedance of the antenna system in use will match the tuner selected. Second, even though the tuners come from the factory and presumably are perfect, peaking of the unit will without a doubt improve the over-all reception. For example, stray capacitance should be compensated for. Finally, nothing could be worse than for the customer to come back and say (after an expensive tuner replacement job) " my set played better before you fixed it." Keep it for a while, check it over thoroughly, and make sure it's "right." Though these sets are factoryfresh, anticipate mechanical troubles that may arise after use for a while and check wear points carefully.

Television Service Clinic

Conducted by ROBERT F. SCOTT

ANUMBER of inquiries indicate that many readers are having trouble eliminating rounded corners and dark, blurred areas at the corners and edges of the screen. These dark areas are neck shadows. They are produced when the electron beam strikes the neck of the tube before it has scanned the edges of the screen.
Many complaints arise when sets have been converted to use a wideangle tube without using the appropriate deflection yoke. With the correct yoke, most cases of neck shadow can be corrected by properly positioning the yoke, focus coil, and ion trap on the neck of the tube.

View the tube from the side and make sure that the neck is parallel to the chassis. Use shims, additional padding, or other means to raise the low end of the tube. Move the deflection yoke up against the flare of the tube and center it on the neck. Center the focus coil on the neck approximately one-quarter inch behind the deflection yoke.

Turn on the set and keep the intensity very low until the ion trap is properly set. Move the focus coil from side to side and up and down to center the raster without shadows. If the shadow is not completely removed, adjust the ion trap for maxinum brightness with good line structure visible in the raster. Do not use the ion trap to eliminate shadOWS if they are present when the ion traf magnet is adjusted for maxiimum brightness.

If it is impossible to remove all shadows by adjusting the yoke and focus coil, try rotating the tube in its mounting. The neck of the tube may be slightly off center or tipped to one side. Rotating the tube may make it possible to remove shadows when other measures fail. Lengthen the high-voltage lead if necessary after rotating the tube.

If these procedures do not help, reverse the leads to the focus coil. This reverses the operating functions of the centering controls but does not harm the operation of the set. If the set has enough vertical and horizontal deflection voltage, you can make the picture larger and move it slightly off center so the shadow is hidden by the mask.

Poor horizontal linearity

My set is a G-E 16C110. The picture cannot be exactly centered horizontally, and the left side of the picture is fuzzy and stretched. It is hard to get the picture to fill the screen on the right side. Nothing that has been done will bring in the full picture on the left side although the left-hand wedges of all test
patterns aire nearly $3 / 4$ inch longer than those on the right.-A. L. Groves, Brooke, I'a.
The trouble is probably caused by a change in the value of the $0.1-\mu \mathrm{f} \mathrm{C} 374$
ference caused by industrial heating equipment or modern diathermy machines can be prevented from entering the set via the antenna by connecting a high-pass filter between the set and

Fig. 1-Change in value of C374 capacitor affects horizontal linearity.
capacitor between the cathode of the damper tube and the B-minus bus. (See Fig. 1.) This capacitor is very critical. Improper values affect the time-constant of the damper-tube circuit and result in defective damping and poor linearity because of nonlinear current through the deflection coil. The value of this capacitor is probably too low. Try replacing it with a $0.1-u f, 600$-volt paper unit. If this does not help, try shunting it with 600 -volt paper capacitors of approximately . 0005 uf until the correct value is found or it is obvious that the trouble cannot be corrected by this means.
Check the horizontal linearity coil L352 for shorted turns. The correct resistance is 15 ohms .

Check the 22 -ruf capacitor (C370) between pin 5 of the 25BQ6 and ground. Leakage there could cause the troubles you are experiencing. If this unit is suspected, replace it with a $22-\mu \mu \mathrm{f}, 500$-volt silver mica unit.
Check C377 and R377 for short circuits or changes in value. R377 is 1,200 ohms and C377 is $0.5 \mu \mathrm{f}, 600$ volts, paper. Replace if necessary. A short circuit or radical change in value of either of these components will change the value of current through the deflection coil and cause the picture to shift horizontally so it cannot be centered with the focus-coil adjustment.

Television interference

When my ncighbor works in his garage, he creates some type of interference which canses my picture to jump around. Will a high-pass filter cure this trouble?-Alfred Martins, Avon, N. J.

Whether or not a high-pass filter will eliminate the interference depends on the type of equipment causing it. Inter-
the lead-in. As additional precautions, try a good line filter and a shield a aound the receiver chassis. High-pass filters can be purchased at most radio supply houses. You can construct your own using the diagrams in Figs. 2 and 3. Fig. 2 is a filter for 300 -ohm lines and Fig. 3 is for 72 -ohm coaxial cable.

Fig. 2-Circuit of a $\mathbf{3 0 0}$-ohm filter. L1 and L3 are 15 turns of No. 20 enameled wire closewound with an inside diameter of $1 / 2$ inch. 1.2 is a center-tapped coil consisting of 16 closewound turns and which has an inside diameter of $1 / 4$ inch.

Fig. 3-A 72-ohm high-pass filter. All coils are wound with No. 22 enameled wire. Each coil is $1 / 2$ inch in diameter and $1 / 2$ inch long. L1 and L4 have seven turns. 1.2 has four and one-half turns, and L3 consists of four turns. Shield the filters for highest efficiency.

If-as is much more likely in your case-the interference is from are welders. electric motors, or other devices which generate dantped wares, it may be partially suppressed by installing line filters at the source of the trouble. This is a job for the owner of the of-
fending equipment. If he does not take measures to elininate the interference, contact the radio inspector in your district or write to the Secretary of the Federal Communications Commission, Washington 25, D. C. If the interference is not frequent, it might be wiser to overlook it.

Stabilizing line voltage

My set is an RCA 6T\%2. Every time $m y$ electric refrigerator comes on, there is a noticeable change in picture size and contrast. Does this interference harm the set in any way? How can I climinate this condition? I've tried connecting the set to different outlets in the house without any noticeable improve-ment.-John Stronski, Baltimore, Md.
The trouble is caused by excessive voltage drop on the power lines when the refrigerator comes on. Most likely, this drop is on the line between the distribution panel and the receptacles. This can be checked by measuring the voltage across the line in the various receptacles and lamp sockets when the refrigerator is running. If the voltage is low on the receptacles but not on the lighting circuit, the voltage drop is confined to the line feeding the recestacles. The effect is not harmful, but may be annoying. You can eliminate it by having a special heavy line run to the refrigerator outlet. If the voltage drops on the lighting circuits as well, it may be caused by using too small a wire between the meter and distribution panel. Have an electrician check the lines for voltage drop and install heavier lines where necessary.
If it is impractical to change the pow-
er lines, install a constant-voltage transformer between the receptacle and the TV set.

X-burn

My set has a $17 B P_{4}$ rectangular picture tube. For the last few weeks, I have noticed a brown cross consisting of lines running from the diagonally opposite corners of the screen. What causes this and how can I remove it?David Bender, Dayton, Ohio.
The brown stain is an ion burn. The cross-called an X-burn-is characteristic of rectangular picture tubes. It corresponds to the round or oval ion spot on round tubes. There is nothing that can be done to remove the burn but you can take steps to prevent it from getting worse and you may be in time to avoid serious damage to the gun structure
The 17BP4 uses a single-magnet type ion trap. Slip the ion trap over the neek of the tube just in front of the tube base. Rotate it so the magnet is opposite the high-voltage connector. Turn on the receiver with the brightness control set to a low-intensity position. If a raster appears, move the trap slowly forward while twisting it slightly from side to side. Reduce the setting of the brightness control as the intensity of the raster increases. The brightest raster should be obtained with the ion trap magnet behind the flags (pole pieces) on the gun of the tube. Replace the trap with one having a stronger magnet if the brightest raster is obtained with the trap ahead of the flags. (If the raster does not appear when the brightness control is turned slightly above half-

TV DX Predictions for July

Television reception conditions in July will be generally similar to those observed during June. The sporadic-E skip season will have ridden over its peak for 1951 in the latter part of June, but will continue with considerable momentum through July. Tropospheric propagation will be generally good over all sections of the country.

As sporadic-E skip development is more or less directly associated with solar phenomena, major openings usually recur on a cycle of about 27 to 28 days, the period required for one complete solar rotation with respect to the earth. Thus, the best indication of when to expect important skip developments will be the dates when the most widespread and strongest openings occurred in June. The most active periods will probably be between the 11th and 14th and the 22nd through the 25th, though short bursts of sporadic-E reception may be expected on the lower channels almost any time during July.

The most likely time of day to watch for openings will be the late morning hours and the period between 5 and 10 pm , local Standard Time. A few openings will develop after midnight; these will offer late-retiring eastern
viewers an opportunity to look for farwestern stations.

Usually July produces at least one strong aurora borealis display. Such events are usually only an annoyance to TV viewers. The net effect of the multipath reflections from the auroral curtain is a picture fuzziness not unlike the snow of fringe-area reception. When aurora effect is noted, or when the northern lights are visible, owners of directional arrays equipped with rotators will do well to swing the beams north and try all channels. Much remains to be learned about v.h.f. propagation via the aurora, and careful observation may well contribute to this end.

Tropospheric refraction will spring some surprises during July, particularly on the high-band channels. Especially during the late hours of the evening, on nights when the air is stable and calm, and the barometer high, the high channels may produce $d x$ up to several hundred miles. Watch the daily weather maps in your local newspapers, and try the high channels when large stable high-pressure areas are shown near your locality.

```
-end-
```

```
-end-
```

way, turn off the set and swing the magnet around to the opposite side of the neck.)
Advance the brightness control until the raster is slightly brighter than normal. Adjust the focus control until the line structure is clearly visible in the raster. Touch up the setting of the ion trap with the brightness control set to the maximum position at which good line focus can be maintained.
Always check the setting of the ion trap whenever the chassis has been moved from the cabinet or the set has been moved about. The ion trap should always be checked whenever the focus coil is moved or the focalizer adjusted.

-end-

V BEAM FOR DX

By L. A. DUCK

A simple but excellent antenna for TV fringe reception (if you have the necessary space) is the V-beam shown in Fig. 1. It has very high gain and sharp directivity. The V contains 70 half-wave elements, all working and all beam-forming. The dimensions shown are for channel 13.

The booster at the antenna end is needed because the antenna has an impedance of 800 ohms, and the signal would get lost on a 300 -ohm line. A Regency booster is specified because it uses 6J6 tubes in a circuit that is very efficient on channel 13. Most other

boosters use 6AK5's which have a higher internal noise level and the boosters do not have much gain on the high channel 13.

Orienting the 78 -foot legs is simple. Lay one wire on the ground, and stretch the other in the general direction of the transmitter to be received. Walk the far end of the stretched wire back and forth. Two definite signal peaks will appear, with almost complete lack of signal between these two points. These maximum points are where the two 15 -foot antenna masts are to be located.
The 78 -foot length is used because a shorter one will give less gain while a longer one will cause time-delay effects. A 150 -foot length would tend to cross two picture elements. This delay is independent of frequency, so the antenna can be used just as well with any channel. However, the separation of the legs does depend on the frequency, but the exact separation is not critical because the booster is tightly coupled to the antenna. Tuning the booster changes the effective separation of the legs.

tV TROUBLE LEXICON

(Courtesy Miduest Radio \& Trlev. Corp., Cincinnati, Ohio)
Laboratory technicians checking $\boldsymbol{T V}$ receiver troubles in final assembly line.

Hallicrafters

T-54, 505, 506. No picture (raster and sound O.K.). Defective 6C4 oscillator: tube.

Insufficient width, width control ineffective. Open 47,000 -ohm plate resistors in 12SNT-GT horizontal amplifier. (See Fig. 1.)
505. Picture deflected toward upper right of screen (vertical or horizontal centering controls ineffective). Leaky $.05-$ uf, 6 -kv coupling capacitor C73 (Fig. 1), . $0005-\mu \mathrm{f}$, h.v. 6 -kv capacitor

Fig. 1-Horizontal and vertical amplifier circuits of Hallicrafters 505.
C72. (A defect in one of the other deflecting capacitors may cause deflections to upper left, lower right, lower left, etc).

No raster (sound normal). Defective 60.4 r.f. power-supply oscillator. Improper setting of r.f. power-supply trimmer. Check range of capacitor where oscillator falls in and out of oscillation; adjust trimmer to its maximum capacitance within this range. This provides maximum operating stability of r.f. oscillator.

Insufficient picture height. Defective 12SN7-GT vertical oscillator or vertical amplifier. Change in value of vertical height control. Defective plate resistor R78, vertical oscillator, mfrs. diagram.

[^4]Erratic picture, crackling in audio. Excessive dirt and moisture on base and socket of picture tube. H.v. arcing. Impending failure of filter capacitor. Defective (leaky) h.v. oscillator trimmer capacitor.

T-67. Intermittent picture, variation in intensity. Arcing at base of $1 \mathrm{~B} 3-\mathrm{GT}$ or picture tube. Intermittent contact between filament leads and base pins of 1B3-GT. Check for evidence of arcing; resoldex base pins, socket connections.

Kinescopes

Cathode-heater shorts. If a resistance check between these elements shows a low-resistance short, try flashing or burning it out vith a temporary application of 110 v.c.c. or other high-voltage low-current source. Typical indication of this trouble is a low-intensity, washed-out picture.

Magnavox

CT214, -218, -221. Picture weaves and ripples on changing scenes (certain scenes distorted). Defective $6 \wedge$ L5 sync separator. (Replace this tube even though it checks good.) Defect in d.c. restorev circuit.

Horizontal oscillator failure. Defective horizontal oscillator tube. Defective grid coupling cepacitor.

Stretching of picture (left side) after few minutes operation. Picture linearity returns to normal if set is allowed to cool. Adjustment of horizontal speed or horizontal drive causes left-hand side of picture to jump or move suddenly. Defective 6BG6-G.

Cross-modulation interference on strong signals. (R.f. amplifier operating on nonlinear portion of curve and acting. as detector). Lixcessive signal over-

More Trouble Shooting Tips On Common Faults In TV Receivers

By JOHN B. LEDBETTER*

loading r.f. stage. Remedy: Remove grid return and solder to chassis ground (at point of lead shield ground). In exceptional cases, padding the antenna may be necessary.

Snall picture segments (regularly spaced) displaced from main body of picture. Defective $6 \mathrm{BG} 6-\mathrm{G}$, causing spurious oscillation.

Motorola

TS-5. No raster. Misadjustment of ion t_{1} ap. Defective 6V6-G horizontal oscillator, bJ5 horizontal discharge, 6BGG-G horizontal output, or 1 B3-GT h.v. rectifier. Open or shorted primary in horizontal output transformer. Open 1B3GT filament winding.

Amall raster. Weak 6BG6-G. Weak 5U4-C: low-voltage rectifier. Shorted $.03-1 \mathrm{f}^{\circ}$ horizontal deffection coupling capacitor C122 or . 05 - Hf C 123 . Shorted vertical deflection coupling capacitors C86B (50 uf) or C87B (10 $\mu \mathrm{f})$. Low line voltage.

Trapezoidal or nonsymmetrical raster. Improper ion trap adjustment. Incorrect focus coil adjustment. Defective deflection yoke.

Wrinkles on left side of raster. Defective 5 T 4 - (i damper.

Picture smear. Low bias on 6AUG first video anmplifier or 6 AC 7 second video amplitier. Leaky . 05 -uf video amplifier coupling capacitors C61 or C62. (See Fic. 2.)

Fig. 2-Coupling circuits of the video amplifier as used in the Motorola TS. 5
Poor resolution (picture stable). R.f. tuner or video i.f. badly out of alignment. Open peaking coils in 6AL5 video detector plate (L 59 or L 60), or in first or second video amplifier plates (L62 or L63). (See Fig. 2.)

TS-5 (VK-101). Sound bars (stippled effect) in picture. Improper adjustment
of fine tuning control. Low-frequency trap L50 open, shorted, or misadjusted.

Fig. 3-Low-frequency trap trouble.
Open or shorted 100- $\mu \mu \mathrm{f}$ parallel-trap capacitors C43 or C44 (see Fig. 3).

Poor focus. Low line voltage. Open $1,000-\mathrm{ohm}$ resistor R116 in series with focus coil and focus control.

Vertical black lines in picture. Defective 6BG6-G horizontal output or 6V6-GT horizontal oscillator. $B+$ lead to tuner picking up horizontal pulses. Replace with shielded lead and reroute so that 250 -volt end ties to terminal strip end of 39,000 -ohm resistor R 67 in the screen-grid lead of V-14. Ground the shield at several points.

TS-9. Loss of brightness. Defective 1 B 3 or $6 \mathrm{BG} 6-\mathrm{G}$. Open or leaky h.v. filter condenser. Increase in value of $820,-$ $000-\mathrm{h} m$ filter resistor R 108 in h.v. supply.

TS-18. Poor vertical linearity. Defective 6SL7-GT vertical output. Defective $22-\mathrm{meg}$ feedback resistor R61 (vertical output to vertical oscillator). (Fig. 4.)

Poor vertical sync. H.v. corona arcing. Open . $01-\mu \mathrm{f}$ integrating capacitors in 12SN7-GT sync clipper output.

Loss of vertical sync. (Not corrected by adjustment of vertical hold control or replacement of vertical oscillator and amplifier tubes). Check value of $1,000-$ $\mu \mu \mathrm{f}$ grid capacitor C69. (Fig. 4.)

No vertical deflection. Defective 12SN7GT vertical oscillator or 6SL7-GT vertical amplifier. Defective . $05-\mu \mathrm{f}$ coupling capacitor C72 or . $01-\mu \mathrm{f}$ charging capaci-

Fig. 4-Causes for vertical troubles.
tor C71. Failure of vertical hold or vertical size controls R57 and R60. (Fig. 4.)

Insufficient height. Defective 6SL7-GT vertical output tube. Defective vertical size control R60. Open h.v. coupling capacitors C75 or C76 (.005 $\mu \mathrm{f}, 6,000 \mathrm{v}$.) from vertical amplifier plates. Shorted $250-\mu \mu \mathrm{f}$ r.f. filter capacitor C77. Shorted ballast tube, causing excessive heater voltage on vertical amplifier. (Fig. 4.)

Vertical jitter. Vertical hold control needs readjusting. Defective $250-\mu \mu f$ vertical oscillator coupling capacitor C68. (Fig. 4.)

Vertical bars on left half of picture. Defective damping resistors R88 or R51 across primary and secondary of horizontal blocking transformer T5. (Fig. 5.)

Poor horizontal linearity. Defective horizontal sawtooth capacitors C62 ($680-\mu \mu \mathrm{f}$) or C63 ($900-\mu \mu \mathrm{f}$). (Fig. 5.)

No horizontal deflection. Defective 12SN7GT horizontal oscillator. Defective horizontal hold or horizontal size control (R49 or R53). Failure in horizontal oscillator blocking transformer

Fig. 5-Horizontal circuits of TS-18
T5. Shorted horizontal sawtooth capacitors C62 or C63 (680 and 900- $\mu \mu \mathrm{f}$). (See Fig. 5.)

Insufficient width. Defective 12SN7-GT horizontal oscillator, defective horizontal size control R53. Open h.v. coupling capacitors C64 or C65 (.001- $\mu \mathrm{f}, 6,000$ volts) going to horizontal deflection plates. Open . $03-\mu \mathrm{f}$ capacitor C58 across horizontal hold control and series resistor. Defective ballast tube, causing low heater voltage on horizontal oscillator. (Fig. 5.)
Horizontal fold-over (left of picture). Incorrect setting of horizontal hold control. Increased values in horizontal sawtooth capacitors C62 or C63 (680 and $900-\mu \mu \mathrm{f}$). (See Fig. 5.)

Excessive picture size, low brightness. Defective 25L6-GT h.v. supply oscillator or 1B3-GT h.v. rectifier.
10VK12. Poor vertical linearity. Defective linearity control. Shorted $100-\mu \mathrm{f}$ cathode capacitor in vertical output stage.
12VK11RA. Black horizontal line at bottom of picture. Improper adjustment of vertical hold or vertical centering controls; defective vertical hold control. Defective 6SN7-GT clipper, 6J5GT vertical oscillator, or $6 \mathrm{~V} 6-\mathrm{GT}$ vertical output.

VT-71M. "Pie-crust" oscillation covering entire screen. Picture-tube mount touching shield cover of r.f. h.v. power supply. Insulate with cardboard or fiber strip.

Horizontal white line (stationary). Defect in h.v. supply; open or leaky filter or bypass condensers. Check to see that
line is not a burn-in from a possible previous failure of vertical scan.

VT-105, 107; VK-106. Horizontal white line (moves with adjustment of vertical hold control). Defective 6SN7GT vertical oscillator or vertical amplifier. Defective vertical coupling or sweep discharge capacitors.

Olympic

DX950. Vertical damping bar on left of screen. Defective 6BG6-G horizontal output or 6W4 damper. Misadjustment of horizontal drive control. Insufficient value in deflection yoke capacitor (replace original $47-\mu \mu \mathrm{f}$ unit with higher capacity, up to about $100 \mu \mu \mathrm{f}$). Insufficient shielding between deflection yoke and video amplifier stages. Yoke leads too close to other kinescope leads.

Philco

48-700, 1000, 1001, 1050, etc. Weak reception, instability. Defective 6J6. Dirty, loose contacts on turret tuner. Defective contact springs on turret.

Intermittent picture and sound. Same as above. Look also for cold-solder joints in tuner.

48-1001. Vertical black line on picture. Caused in early models by regeneration from the $0.1-\mu \mathrm{f}$ capacitor connected from the 6BG6-G screen to ground. Remove capacitor entirely (this has been done in all later production models).

48-1000, 1050. Weak sound and picture. Defective 6J6. Shorted $10-\mu \mathrm{f}$ 6J6 plate filter capacitor C409 or $22-\mu \mu \mathrm{f}$ grid coupling capacitor C404.
1075. Picture jumps, tears horizontally (to right). Defective 6BG6-G. Defective leads on $0.5-\mu$ f capacitor C522 connected from $5 \mathrm{~V} 4-\mathrm{G}$ damper to holizontal deflection coils.

48-2500 (Projection). Poor linearity on background objects. Improper adjustment of keystone magnets inside optical barrel. Adjust according to manufacturer's specifications.

49-1475. Fine tuning control ineffective. Defective 6AL5 picture discriminator which controls automatic tuning.

48 Series. Sound bars on channel 4. If bars are eliminated when one of the sound i.f. tubes is removed, they are being eaused by a beat between channel 4's video carrier and 3rd harmonic of sound i.f. Realign sound i.f. at 22.0 mc and realign video i.f. 100 kc lower.

48 and 49 Series. Receiver drift. Defective 6J6 oscillator. Improper alignment of sound i.f. Signal too weak to operate a.f.c. In earlier models, drift can be reduced by installing improved discriminator transformer and $10-\mu \mu \mathrm{f}$ negative-coefficient oscillator grid-tank compensating capacitor (available in kit form as Philco part No. 45-9535).
(continued next month)

Audio Feedback Design

Part IX—Discussing mu-beta effect
 in design of feedback amplifiers.

By GEORGE FLETCHER COOPER

EVERY writer on feedback opens with a light barrage of mathematics. in which the gain of an amplifier with feedback is shown to be

$$
\mathrm{K}^{\prime}=\frac{\mathrm{K}}{1+\mathrm{K} \beta}
$$

Where K is the gain without feedback, and β is the attenuation of the feedback path. Then there is a discussion of this, and out of the hat comes $\mathrm{K}=1 / \beta$. Blinded with science, the reader rubs his hands and reaches for

Fig. 1-Two-terminal network problems.
a soldering iron. Obviously, however, the gain without feedback is not always large, and if we are concerned with lowgain amplifiers, or with effects at the edge of the band, we must go back to the basic equation. We can write this in the form:

$$
\mathrm{K}^{\prime}=\frac{1}{\beta} \times \frac{\mathrm{K} \beta}{1+\overline{\mathrm{K} \beta}}
$$

When we work in decibels, we have: gain in $\mathrm{db}=$
$20 \log \frac{1}{\beta}+20 \log \left(\frac{\mathrm{~K} \beta}{1+\mathrm{K} \beta}\right)$
You will notice an interesting term enclosed in the parentheses. This is what we have been looking for, because: the first term on the right-hand side is just the traditional approximation; the second term is the gain component of what is called the "mu-beta effect." This unexpected name was provided by the godfathers. Dr. Bode uses $\mu(\mathrm{mu})$ where we have used K. In the classical papers you will find the fundamental equation written

$$
\mathrm{G}=\frac{\mu}{1-\mu \beta}
$$

In this form, β is negative in the important regions if we have negative feedback, while I have assumed that we would let the signs look after themselves by using the table given in Part VIII. We must watch this rather carefully now, because the mu-beta effect calculator is designed from the Bode notation.

Before going on to discuss the refine-
ments in calculation which are provided by the exact formula, let us look at the reasons for using it. Some of them will probably never affect some of my readers, but in special circuit designs this technique is invaluable. For one thing, it takes the use of positive feedback out of the cut-and-come-again class, and there's a big future in positive feedback, if only to help out in the component shortage.
The first use of the exact equation is to check what happens at the edges of the band when the gain of the amplifier varies. If you look up the JAN specifications for the tubes you are using (British readers will find their valves in the Services Preferred List), you will see that when the maker says boldly, $g_{m}=5,000$ micromhos, he really means something between 4,000 and 6,000 , or, if you are not a military customer, even wider limits. Roughly speaking, that means that the gain per stage can vary over a range of about 4 decibels: in three stages, 12 db , will be the range for a typical audio amplifier.
Actual stability, under these conditions, may be a headache in its own right, but the maintenance of a specified frequency response often may cause a lot of trouble. A batch of tubes on the high side may result in the measured

Fig. 2-Some typical impedance problems in four terminal network analysis.
frequency response falling outside the customer's limits. Try telling him his tubes are too good!

The second major use for the exact equation is in one of these multiple feedback loop amplifiers we discussed in Part VII. If we want to design this right to the bitter end, we must determine the gain and phase characteristics of the first subamplifier with its positive feedback to draw the phase and amplitude responses for the complete amplifier, to which the main negative feedback is applied.

A mu-beta calculator

These more refined calculations became really practicable in October, 1949, when Jean Felker of the Bell Laboratories published a paper called "Calculator and Chart for Feedback

Problems" (Proc. I.R.E. 37, 1204). The calculator is a sort of circular slide rule for performing the necessary phase and amplitude calculations. ${ }^{1}$
Let us go back to the mathematics again. and see what we are dealing with. The mu-beta effect is

$$
\frac{\mathrm{K} \beta}{1+\mathrm{K} \beta}
$$

In ceneral, both K and β include a phase shift. Let us take the total phase shift in the amplifier and feedback network at a particular frequency to be θ. This is the phase which we use when we draw the Nyquist diagram. Since we now have to watch our signs, we must notice that in the middle of the working range $\theta=180^{\circ}$, while at the danger point for stability, $\theta=0$. Thus when you draw diagrams like Fig. 5 of Part III; you must put the phase zero at the hottom, and the point B (marked 150° in Fig. $5 /$ III) becomes $30^{\circ} . \theta$ is thus what we have called the phase margin. We can write the mu-beta effect as

$$
\gamma \underline{/ \phi}=\frac{|\mathbf{K} \beta| / \theta}{1+|\mathrm{K} \beta| / \theta}
$$

Where γ (gamma) is the magnitude of the mu-beta effect, and δ is the phase. We know the phase shift in the feedback network, because we can calculate it using the templates: call this ψ (psi). The phase shift through the amplifier is then $(180+\phi-\psi)$. When ψ is zero, this is $(180+\infty)$ instead of the value without feedback, $(180+\theta)$.

The gain of the amplifier is γ decibels plus the ideal gain, $20 \log { }_{\beta}^{1} \mathrm{db}$. These Greek letters have been used because they are the same as those in the Felker paper: the only difference is

1 Available from Grophimaties, 201 N. Taylor Ave.,
Kirkwood 22 Mo. Kirkwood 22, Mo.

Fig. 3-Impedance forms plotted in db.
that our β must have a negative sign.
For some purposes it is rather useful to turn the mu-bata effect upside-down. Let us write $v($ upsilon $)=1 / \gamma$. Then

$$
\begin{aligned}
v / \underline{/_{\phi}} & =\frac{1+|\mathrm{K} \beta| / \theta}{|\mathrm{K} \beta| / \theta} \\
& =1+\frac{1}{\mid \overline{\mathrm{K} \beta \mid} / \theta .}
\end{aligned}
$$

I did not do this bit of mathematics just to show how clever I am: this particular form is rather a useful one. Consider the impedance shown in Fig. $1-\mathrm{a} . \mathrm{Z}$ is any impedance, and R is a resistance. Taken together the impedance is $R+Z$, and this can be written $R(1+Z / R)$.

Remembering that Z is a general impedance, we can write this as

$$
R\left(1+\left|\frac{Z}{R}\right| \underline{\left./ \theta^{\prime}\right)}\right.
$$

If we put $\theta=-\theta^{\prime}$ and $\mathrm{K} \beta=\mathrm{R} / \mathrm{Z}$ the impedance of the two-terminal network is thus $\mathrm{R}_{\mathrm{v}} /-\phi$.

In much the same way, the admittance of the circuit in Fig. 1-b is

$$
\frac{\mathrm{l}}{\mathrm{R}}\left(1+\frac{\mathrm{R}}{Z} \frac{\theta^{\prime}}{Z}\right)
$$

and we put $\mathrm{K} \beta=\mathrm{Z} / \mathrm{R}$ and also put $\theta=\theta^{\prime}$, to make the ad-
mittance equal $\frac{1}{\mathrm{R}}-v /-\phi$.
We can go even further, and apply this expression to the networks of Fig, 2. If we take the ratio $\frac{E_{1}}{\boldsymbol{E}}$, which is the most useful when we want to convert to decibels, we have for this ratio:
a. $=1+|\mathbf{R} / Z| / \theta^{\prime} ;$
b. $=1+|\mathrm{Z} / \mathrm{R}| / \theta^{\prime} ;$
c. $\left.=1+) 1+\left|\mathrm{R} / \mathrm{Z}_{\underline{v}}\right| / \theta^{\prime}{ }_{1}\right)\left|\begin{array}{l}\mathrm{Z}_{1} \\ \mathrm{l}\end{array}\right| / \underline{\theta_{2}^{\prime}}$.

Even the impedance forms are useful in decibels, because when we connect an impedance as the plate load of a pentode, the gain is $g_{\ldots} \mathrm{Z}$, or (20 log $\left.g_{t 1}+20 \log Z\right)$ decibels. For that reason, the curve of v given as Fig. 3 shows z in decibels.

We could, of course, proceed to use those curves to determine the mu-beta effect, but the Felker calculator is much more convenient. This chart is reproduced as Fig. 4. The rotatable arm should be cut out, fastened to a suitable

Fig. 4-This is a simplified version of the Felker chart described in the text.
backing of thin card or plastic, and attached to the center of the circular chart. One end of the moving arm is longer than the other, and in use this end moves over the upper semicircle, which represents the mu-beta phase scale.

Figs. 5 and 6 have been constructed to enable us to work out an example. Three circuits of 6 db per octave are assumed. with characteristic frequencies at 1,2 , and $4 \sqrt{2}$. The most feedback which could be applied without instability is 21 db , and for this example we shall assume that we are applying 15 db of feedback. We therefore construct the second scale, narked mu-bera, with its zero at the 15 db down level on the gain below maximum scale. In Fig. 6 we provide a new phase scale, working down from a zero at the old 180° level.

Using the calculator

Now take the calculator. At $(1)=2$, we have nu-beta $=+4 \mathrm{db}$ and $\theta=50^{\circ}$: find the point where mu-beta $=+4$ and mu-beta phase $=50^{\circ}$. It is up near the top left-hand side (I almost wrote corner) of the chart. Turn the rotating arm until it passes through this point, and read off the mu-beta effect magnitude, on the arm itself, and the phase, on the semicircular scale. We find +2.3 $\mathrm{db}, 40^{\circ}$. Repeating the calculation at other points, we get $+6.2 \mathrm{db}, 92^{\circ}$ at $\omega=2 \sqrt{ }$., and so on. All these values have been plotted in on Figs. 5 and 6; on Fig. $\overline{5}$ you will remember that this mu-beta effect is the deviation of gain from what we expect in the simple theory. We use the mu-beta scale for plotting the response. As you can see, the "flat" gain is about 1.5 db below the zero determined by the simple theory. The phase shift is, at most frequencies, much less with feedback, but at the edge of the working band it rushes sharply upward. You can see how dangerous this can be in a multiple-lool, amplifier, by considering the values at $(1)=4$: with feedback the gain is 1.5 db ahove the standard value. but the nhase shift has practically hit the 180° mark. As a subamplifier in a complicated multiloop system this particular system could give you enough headaches for a lifetime.

Suppose that in place of the gain we planned, the amplifier has in it rather old tubes, or low-limit tubes. The gain without feedback K, which we are calling mu in this article, may have dropped 6 db . The feedback term, β, remains the same, however, so the product $\mathrm{K} \beta$ (mubeta) is down 6 db . The mu-beta scale zero, on the left of Fig. 5, should now be set at 9 db on the "gain below max" scale. At $\omega=2$ we have $\mu \beta=-2 d b$ $\theta=50^{\circ}$, so that the $\mu \beta$ effect is +0.2 db instead of +1.6 db . As $\omega \rightarrow 0$, the response, for $(\mu \beta)=9 \mathrm{db}$ and $\theta=180^{\circ}$, is 2.6 db : the response therefore has risen 2.8 db at ${ }^{(1)}=2$ for this low-gain case, instead of 3.1 db for the normalgain case. The mid-band gain has dropped 1.1 db .

I am not inclined to discuss this application of the mu-beta calculator any
further. The time that would be spent reading further discussion can be spent more profitably in working out some examples with the aid of the calculator itself. However, here is an important thing to be aware of: When the feed-, back neiwork contains reactances, which usually will be capacitors, the response calculated is that which appears at the output of the feedback network. Therefore it is necessary to subtract the response of the feedback network from the calculated response given by the mubeta calculator to get the response for the over-all system. This is shown in the basic equation:
gain $=20 \log \frac{1}{\beta}+$ mu-beta effect.
Here is another ase for the mu-beta calculator: It can be used for calculating the stability margin directly. As you

Fig. 5-Three design curves of amplifier.
may remember, we showed in Part VI that a quantity called the stability margin was a very useful measure for the safety of a design. This quantity is

$$
\frac{\mathrm{K}^{\prime}}{\mathrm{K}}=\frac{1}{1+\mathrm{K} \beta}
$$

in our notation. The mu-beta effect, you will remember, is

$$
\gamma=\frac{\mathrm{K} \beta}{1+\mathrm{K} \beta}=\frac{1}{1+\frac{1}{\mathrm{~K}, \beta}}
$$

If we have a value of, say, 6 db for $\mathrm{K} \beta$, and we calculate the $\mu \beta$-effect corresponding to -6 db , the quantity we ob-

Fig. 6—Two curves showing phase shift.

Fig. 7-The calculator solves a problem.
tain is the stability margin. Let us draw up a table from Figs. 5 and 6:

$$
\begin{aligned}
& { }^{(1)}=\begin{array}{llllll}
1 & 1.4 & 2 & 2.8 & 4
\end{array} \\
& \mathbf{K} \beta=\boldsymbol{\mu} \beta
\end{aligned}
$$

$$
\begin{aligned}
& \mu \beta \text { effect } \\
& =-0.8+0.3+2.3+6.2-0.5 \mathrm{db} \\
& \text { Stability Margin } \\
& =-10.8-7.3-1.8+7.2+5.8 \mathrm{db}
\end{aligned}
$$

The last line was calculated directly, taking the ($-10 \mathrm{db}, 97^{\circ}$), ($-7.5 \mathrm{db}, 75^{\circ}$) etc. points on the chart. This means that it is not necessary to pass through the response, mu-beta effect, over-all response system in order to check the stability margin. When the feedback path has a nonuniform response this can be very helpful, because all that need be done is to plot the two pairs of curves, for mu-beta and for beta, and then determine the stability directly.
There is a very attractive phrase which you can find in British patents: "Having now particularly described and ascertained the nature of the invention ..." Well, we've done that, but just in case the explanation has not been sufficiently certain, Fig. 7 shows how the calculator is actually set to fish out the results at $(1)=2$. The point marked A is at mu-heta $=+4.2 \mathrm{db}$, mu-beta phase $=50^{\circ}$: the rotating arm OA has been turned until the edge passes through this point, and the mu-beta effect is read off at A on the scale printed on the arm. The phase of the mu-beta effect is read off on the circular scale For the stability margin we hunt out point $\mathrm{B},-4.2 \mathrm{db}, 50^{\circ}$, and twist the arm to pass through this point. The stability margin is read off from the arm.

Wary readers may have noticed that almost everything I have discussed in this series of articles deals with the analysis of feedback circuits, and not the synthesis. We guess a circuit, and test it, on paper, to see if it will work. Nearly everything in the field of circuit design boils down to this in the end: The main differences appear in the methods of testing. At one extreme you wire up the circuit and pray; at the other extreme you test on paper in such a general way that you never come to a practical answer. These articles are aimed at a reasonable compromise. They
do provide all the information needed by the average professional designer but at the same time I hope that they are not too forbiddingly mathematical for the man who wants to build just one amplifier, but wants to build it right. Anyway, you can always skip the mathematics.

The important thing to learn here is: mu-beta simplifies design work.
(continued next month)

VARIABLE LOUDNESS CONTROL

Loudness controls are special volume controls which provide increasing a mounts of bass and treble boost as the volume is reduced. This compensates for the variations in response of the human ear so the output of the amplifier will appear balanced at all volume levels. Tapped volume controls provide a limited amount of compensation. This is greatest when the arm of the control is resting on the tapped point. Step type controls require a large number of components. They are difficult to construct and require special care in shielding to prevent hum pickup and feedback.

A continuously variable loudness control requiring only seven inexpensive components is described in a release by I.R.C. The circuit of this control is shown at a and its physical construction is shown at b. R1, R2, and R3 are IRC controls type Q11-133, M13-137, and $\mathrm{M} 13-128$ respectively. The first is a standard type control and the others are multisections designed for making dual. triple, and quadruple controls. The curve r shows the increase in bass and treble boost as the control is turned toward the minimum-volume position.

This control has a 6 -db insertion loss which must be made up elsewhere in the amplifier if full output is to be realized.

Electronics and Music

Part XIII Stroboconn, precise frequency meter, measures sound accurately to hundredths of a semitone

RICHARD H. DORF*

Photo A-Dises used in Stroboconn.

WHILE this series is concerned with electronic musical instruments, the Stroboconn ${ }^{1}$ is so closely allied with electronic music and so useful with electronic organs as well as more conventional acoustic instruments that it should be of great interest to all who work with both electronics and music.
The Stroboconn is in essence an extremely accurate frequency meter. It was specifically designed as an aid in tuning musical instruments, by the manufacturer of the Connsonata-an electronic instrument we shall describe

Photo B-The Stroboconn is in two sections. In use they are removed from covers and the scanning unit placed atop the tuning unit. Either an air or contact microphone may be employed, being placed near source of sound.
later in the series. It is also highly effective in the laboratory and in industry for measuring vibrations, oscillations, and other periodic phenomena within its frequency range.

The instrument is in effect a superstroboscope. Twelve discs, each a replica of the one shown in Photo A, revolve at different speeds. Each disc corresponds to a note of the tempered musical scale and revolves faster than the preceding lower one by a ratio of almost exactly the 12th root of 2. A special large neon lamp is excited by a microphone-fed amplifier. When the microphone is placed near a source of sound-a piano tone, for example, or an organ notethe neon lamp flashes at the frequency of the sound, illuminating the discs stroboscopically. If the speed of one of the dises is such that the number of black segments passing a given point per second is the same as the audio frequency being measured, the pattern appears to stand still. Calibrations on the Stroboconn then indicate the frequency. All 12 dises can be seen through small windows, as Photo B shows.

Photo C is a photograph of one of the windows, exposing a segment of the dise behind it in motion. As Photo A indicates, each disc has seven concentric rings of patterns, each ring having twice the number of black portions as the adjacent inner one. Thus each disc takes care of the same note in seven succeeding octaves. In Photo C the narrow part of the window exposes the innermost ring on the disc. The first three rings are invisible because the frequency being measured corresponds to that of the fourth ring, in which the stopped pattern can be seen. This tone apparently has some harmonic structure, for the fifth and sixth rings are also stopped, though they are illuminated less well.

Elecłronic circuiłry

The most essential requirement for accuracy in an instrument of this kind is that the motor driving the dises run at constant speed. In the Stroboconn this regulation is provided by driving the motor with a tuning-fork-excited amplifier, diagrammed in Fig. 1. The tuning fork is made of a special alloy. called Connivar, which has an extremely low temperature coefficient. The metal is so stable that the accuracy of the fork varies only a maximum of .002 percent per degree Centigrade. For musical purposes a pitch accuracy of
0.1 percent is considered very high and few people (if any) can perceive pitch variations so small. In continuous operation the entire instrument, including gears, fork, and all other variants, is accurate to within .05 percent.

The fork is driven by a regenerative circuit, in which respect it resembles electronic oscillators. The pickup coil (Fig. 1) drives the first grid of a 6 SC 7 . The plate output is fed to the grid of the second section, part of whose plate load is the fork drive coils. Thus the output of the fork is fed back in the correct phase to furnish driving signal, the driving power being supplied by the B-voltage source, a standard rectifier-filter combination.

The fork-controlled signal is then fed through a $6 S N 7-G T$ phase inverter to a push-pull-parallel 6V6-GT output stage. The secondary of the output transformer drives the synchronous disc motor.

The normal frequency of the tuningfork oscillator is 55 cycles, but the frequency can be varied at will. Photo D shows the fork and the sliding weights whose position can be changed to vary resonant frequency. The varying mechanism is operated by a knob which appears at the bottom of the lower unit in Photo B.

The upper of the two units in which the Stroboconn is mounted contains the motor, discs, and flashing amplifier, diagrammed in Fig. 2. The amplifier is entirely conventional: a voltage amplifier, phase inverter, and push-pull output stage. A special, large, U-shaped neon lamp is fed by the secondary of the output transformer. The lamp is large enough to provide light behind all the discs, which are translucent.

The power connections in Figs. 1 and 2 are rather confusing. The scheme is shown better in Fig. 3, an extract from the other two diagrams. Two power switches are supplied. One, called the POWER SWITCH, is in series with one side of the 117 -volt a.c. line and a protective fuse. The other, the motor-RUN warmUP switch, is a double-pole, double-throw unit. In the warm-up position in which it appears in Fig. 3 (and with the power switch closed) 117 -volt, 60 -cycle power is fed to the motor and the output of the tuning-fork amplifier is dummy-loaded by a 500 -ohm, 50 -watt resistor. After the motor and fork have warmed, the switch is thrown to the run position in which the motor is connected to the fork amplifier and the flashing amplifier power transformer is energized. After the flashing amplifier has warmed up, the instrument is ready for use.

The discs are rum by the motor through a system of gears. Since the 12 th root of 2 is not a rational number -it can be carried to an infinite number of decimal places-the gear ratio from one dise to the next is not quite correct; no one has yet been able to design gears with a nonintegral number of teeth! It is so close to correct, however, that the difference is not perceptible.

Fig. 1-The motor of the Stroboconn is driven by this tuning-fork-controlled amplifier. The fork is made of Connivar, has very small temperature co-efficient.

Reading frequency

The normal position for the tuning unit control is at zero. The tuning fork weights are then set so that the oscillation frequency for the synchronous motor is 55 cycles per second. The motor is so geared to the dises that the A dise rotates at 27.5 revolutions per second. The first (inner) ring has two black portions so that a black portion appears in a given position 2 times 27.5 , or 55 times, per second. The fourth ring has 16 black portions; thus one appears 16 times 27.5 , or 440 times, per second. If the signal fed into the microphone is at 440 cycles, the lamp will flash once each time that a black mark appears in the fourth ring and the marks will appear to stand still. At 440 flashes per second, however, each black mark of the first ring is illuminated 8 times each time it appears, so it does not stand still. As a result the fundamental frequency of whatever
tone is being measured is indicated by the innermost stopped pattern. Octave harmonics of the tone are indicated by the stopping of additional rings toward the outer edge of the disc (or the wide portion of the window).

Each ring of each disc is numbered around the windows in accordance with the ordinal number of the note. The calibration strip between the two sets of windows indicates the exact frequency of each note, based on an A of 440 cycles. That calibration is not necessary, of course, for routine instrument tuning. but is helpful for other purposes.

Interpolation

Probably the feature most responsible for the Stroboconn's versatility in both music and nonmusic applications is the ingenious provision made for reading with great accuracy any frequency within its range. The basis of this is the knob-controlled, calibrated sliding

Fig. 2-Diagram of the scanning unit. The neon flash lamp is of special design.

Photo C-Photo of a scanning dise in operation shows stroboscope patterns.
weight on the tuning fork. Referring again to Photo B , as the tuning unit knob is rotated the pointer on the scale above it reads the frequency change in terms of hundredths of a semitone. These small intervals are known as rents. Since the musical scale is built on a logarithmic, not an arithmetic, basis, a cent represents a constant percontage change in frequency rather than a constant numerical change. A semitone or halftone (the interval between, say, C and $\mathrm{C} \#$ or E and F) represents a frequency ratio between the two pitches of the 12th root of 2 (see August, 1950, issue). One cent therefore represents a ratio of

$$
12 \sqrt{2 / 1} 00
$$

which works out to approximately $.058 \%$. As an example, a 1 -cent increase in the frequency of $\mathrm{A}-440$ is $440 \times$ 1.00058 , or 440.25 cycles.

In practical terms the meaning of the
above is guite simple. If the middle A is sounded on a piano or organ being. iuned with the Stroboconn, ring No. 57 should stand still. Suppose it rotates very slowly to the right, indicating the tone is sharp, then to tune it to exact pitch the tuner adjusts the musical instrument until the pattern stands still. Or, to find out just how sharp it is, he rotates the tuning unit control upward from zero until the pattern stands still. If the pointer is then at 1 cent, he knows it is 0.25 cyele sharp.

Tuners jarely need to know how sharp or flat a tone is except for the "stretching" techniques described below. Of greater value is the fact that any frequency of an oscillator, or vibration, or anything else in laboratory or industry may be measured in this way. A book of tables is furnished with the Stroboconn. With its aid the operator can discover the exact frequency (to five significant figures) of anything that can be either fed to the flashing amplifier or picked up by the microphone. He merely manipulates the tuning knob until one of the patterns is stationary, then refers to the tables for the frequency.

Piano tuning

The old-time piano tuner was usually a craftsman of great skill and years of experience. Many of the best of them started their careers in piano factories, working up by stages to the exacting job of adjusting new pianos before they were shipped. Expert tuning has always required an intimate knowledge of piano construction, a first-class ear for pitch, and much practical experience.

One of the reasons that tuning has never been a purely mechanical job is

Photo D-The tuning unit. The tuning control slides weights on fork.
that an expert tuner does not actually tune the piano notes to theoretically correct pitch. except in the middle nctares. The orertones of a struck string are not true harmonics of the fundamental but are instead slightly sharper -higher in pitch-than the true harmonics would be. If the entire piano is tuned to exact pitch, the upper overtones of the middle octaves are sharper than the corresponding fundamentals of the upper octaves. Too, the upper harmonics of the lower octaves are sharper than the corresponding fundamentals of the middle octaves. The result is, as any musician who has ever heard a piano so tuned will instantly say, that it does not "sound right."
To make it sound more natural, the tuner "stretches." He tunes the upper

Fig. 3-The motor start circuit redrawn.
octaves sharp and the bass ones flat. Most tuners, aware of the fallacy of tuning an entire instrument to true pitcl, balk at the idea of using an electromechanical device.

However, the variable, calibrated pitch adjustments of the Stroboconn orercome the difficulty, After a little experiment, a tuncr determines just how sharn or flat each note of these "stretched" octaves should be tuned to suit his and his clients' tastes and he notes the pitch change in cents. In future tmings, he needs merely to shift the tuning knob according to his notes and tune for a stopped pattern. The time saved and the accuracy gained are well worth while. The accuracy is especially valuable when two pianos, to be used in duo-piano playing, are tuned, for then it is essential that they correspond. For tuning the lower octaves it is not even necessary to experiment and make notes. The tuner simply adjusts the piano so that with the pointer on zern cents, the higher overtones of the bass notes, which appear in rings outside that of the fundamental, give stopped patterns. In this way, he is actually tuming the overtones of the notes to true pitch, not the fundamentals, which will automatically be slightly (and desirably) flat.

In next month's article we shall begin our discussion of tone coloring in electronic instruments. Following that article on this important phase of electronic music we shall present a detailed description of the Hammond organ. ${ }^{1}$ C. G. Conn, Ltal., Elkhart. Ind.

Rico Amplifier Operation

Mi-Fi operation

 obtained only by proper adjustment of three channelsBy
JACINTO SUGRANES

THE circuits of the three-channel Rico amplifier were discussed in some detail in last month's issue. Now let's look into the adjustment and operating procedure for getting the best results from the amplifier.

The first step, once the circuits are wired up and in working order, is to adjust the bias on the three pairs of output tubes. This is an important adjustment, because the 2A3's are fairly sensitive to changes in bias, and any unbalance in any of the three pairs will introduce distortion. Furthermore, this balance should be checked at frequent intervals. This is not difficult, because the metering circuits are all built in.

Fig. 1 shows the phase inverter and push-pull output stage of one of the three channels. The other two channels are identical excent for the values of the components marked C1 and R1, and these have no effect on the adjustment procedure.
The bias is adjusted by setting potentiometer R3 until the plate currents of the two tubes are equal. Switch S1 back and forth between positions 1 and 2 until the meter readings for these two positions are equal. Actually the meter reads the voltage drop across the two halves of the output transformer winding and not the plate currents. The d.c. resistance of the two windings therefore must be equal, as is usually the case with the better output transformers. In the Rico amplifier, pilot lamps are connected to a second deck on the meter switch, so that a lamp indicates which plate circuit the meter is measuring. Colored jewels for these lamps can be selected in color pairs to make identification casier.

If the two halves of the transformer winding are not equal, the balance can be checked by measuring the plate current of each of the tubes. This can also be arranged by switching, but a somewhat simpler method is to install closedcircuit jacks in each plate circuit and

Home Installation showing professional appearance of the Rico amplifier
plug in the meter to the circuit being measured. The meter should have a 100 -ma full-scale deflection, as the normal plate current of each tube in this circuit is about 50 ma. A third way to check the bias is to measure the voltage directly from grid to cathode, but this requires a vacuum-tube voltmeter and therefore is not as easy to build in. The method described is adequate.

The bias for the 2A3's is developed across the 720 -ohm resistor in series with each filament, half of the $160-\mathrm{ohm}$ potentiometer R:3, and the series fila-
ment string made up of the 12AH7's and the 12 SC 7 shunted by the 250 -ohm resistor. The bias on each of a pair of 2A3's cannot be varied independently of the other, and R3 is used only to balance the pair. If for any reason the bias is not correct for the tubes when balanced, it must be adjusted by changing the value of the 720 -ohm resistors in the filament circuits until the combined current for each pair of 2A3's is about 100 ma . This will change after ${ }^{\circ}$ use, and should be checked.

A 1-ma meter need not be used in the

Fig. 1-Phase inverter and push-pull output stage of one channel.
plate metering circuit, as almost any unit of less than about 500-ma fullscale reading will do. It is necessary only to adjust the resistance in series with it so that normal plate current produces a reading well up on the scale. The actual value of the resistance is not important, as the meter is used only as a comparator and not to obtain actual values.

Phase inverter setting

For good push-pull operation, the voltage supplied to the output tube grids must not only be 180° out of phase, but must also be equal in amplitude. Phase inversion in this amplifier is adjusted by the potentiometer R2. The inverter itself is simply a dual triode in which a fraction of the output of one section is fed to the grid of the other.

To adjust the inverter, set switch S 2 to position 1. This connects the two plates of the output stage in parallel, so that if the signals on the two grids are equal and 180° out of phase, the amplified signal on the plates will be cancelled. Then adjust R2 until the signal is no longer heard at the speaker. Any convenient signal source may be
applied to the amplifier input. Almost any record that is convenient may be used. This adjustment must be made for each of the three channels, and the other two channels must be silenced during the operation. Once the phase inverter is balanced, lock the controls securely and switch $\$ 2$ back to position 2. S2 also controls a pilot lamp which indicates which position it is in. The phase inverter adjustment is fairly stable and normally needs no resetting unless the inverter tube or the output tubes are changed.

Each channel has its own volume control. These are used to adjust the over-all balance among the three channels. All except the tin-eared can usually do a good job of this by using a record as a test signal. Use a good cuality record, preferably a familiar piece with full orchestra. This method is perhaps better than using an audio oscillator at the input, because the frequency ranges at the output overlap. and the only simple way to get an overall response curve would be to use a calibrated microphone near the speakers.

These individual volume controls can be used as tone controls, but it is better
to leave them alone once they are adjuster. Separate tone controls are provided in the treble and bass channels (R3 and R8 in complete schematic, June issue).
Two gain controls are used in the amplitier input circuit. One is the usual potentiometer type, the other a compensated gain control. The potentiometer is adjusted so that the maximum signal which can be expected at the input will not overdrive the amplifier. This can le done by playing a loud record while making the adjustment. The enomensated volume control is used as the seneral control. It keeps the balance between highs and lows regardless of how softly the amplifier is played.
While the large number of controls on this amplifier give it an unusual degree of flexibility, they also make the adjustments somewhat more complijcated. The correct setting for each of the contuols depends on the setting of the others, so that some trial and erros will be necessary to get the best results. But the discriminating music lover shoulel get many hours of enjoyment. from this amplifier.

-end-

Universal Hi-Fi Preamplifier

THE recommended G-E reluctance pickup preamplifier is designed to start boosting the bass at a turnover point of about 780 cycles. This turnover is a good average for American 78 -r.p.m. records, but where the recorded turnover point is as low as 500 cycles, the bass may be excessive. London ffrr 78-1.p.m. records and most other European $78-\mathrm{r} . \mathrm{p} . \mathrm{m}$. pressings have a turnover of around 250 to 300 cycles. Many of these are superb recordings but they sound atrocious on our reproducers with the high basshoost point.
The recommended G-E preamplifier can easily be modified to give a variable bass turnover point at the cost of a selector switch and a few paper capacitors. In Fig. 1 the assembly shown within the dotted lines replaces the usual . 01 -uf capacitor in series with the $33,000-\mathrm{hm}$ resistor and ground. The table shows the values. The 2.2 -megohm resistors may be used to prevent switch

Fig. 1-Variable bass turnover circuit.

By M. G. O'LEARY

clicks. The switch itself should be of the shorting type.

Most American records will sound best at position 1 , but some will sound better at positions 2 or 3 . European recordings will probably be most satisfactory at positions 3 or 4. LP's will probably sound hest on positions 1 or 2. Position 5 is optional and is only included where the amplifier might be used with a low-level microphone.

Position 5 might be substituted by a 2 -megohm variable resistor to provide for a variable bass boost. However, this is not recommended, as the amount of hoost provided without it is normally required, and, if anything, more than this amount of boost may be necessary to compensate for amplifier and speaker shortcomings or low-level playback. It seems logical to use the equalization in the preamplifier to equalize the recording characteristics. Another stage in the amplifier proper can be designed to hoost the bass to compensate for the other factors. Otherwise compensation in the preamp stage only, to be flexible enough to compensate for all records at many reproducing levels, would be extremely complicated.

The additional bass-boost stage is shown in Fig. 2. The 2 -megohm variable control gives a variable boost from flat to about 18 db at the very low frequencies. C 1 should be found by experiment. If the amplifier and speaker have a good bass response, C1 at $.01 \mu \mathrm{f}$ will
prohatly best equalize for the apparent loss ot hase due to low-level playback. With poorer speakers and less expen.. sive amplifiers, other values of C1 may give hetter jesults.

Finally, if the amplifier and speakez system have a good treble response, one

Fig. 2-Additional bass-boost stage. of the standard tone controls consisting of a plate bypass capacitor in series with a variable resistor can be added to control the excessive brilliance of reprodaction resulting from the treble-pre-emrihasis in the recordings. Here again the capacitor value can best be determined by experimenting. If such a control is added at point X in Fig. ${ }^{2}$,

Switch Position	Capacitor Value (mf)	Bass Turnover Point (Cycles)
1	. 01	780
2	015	500
3	02	390
4	025	310 flat

use .015 to .02 uf if V1 is a low-mu triode. This should give a treble turnover of approximately 1,000 cycles.

```
-end-
```


GET IT!

 the only complete

 the only complete up-to-date catalog for Everything in Radio, Television and Industrial Electronics

1851 ALILED oftabs

Send for it today!

Here's the only complete, up-to-date Buying Guide to TV, Radio and Industrial Electronics-packed with the world's largest selections of quality equipment at lowest, money-saving prices. See the latest in TV, AM and FM receivers; radio-phonos; new Sound Systems and P.A. equipment; High-Fidelity Custom Sound components; recorders and accessories; full selections of newest Amateur receivers and station gear; test instruments; builders' kits; huge listings of parts, lubes, tools, books-the world's most complete stocks of quality equipment.
allied gives you every buying advantage; speedy delivery, expert personal help, lowest prices, assured satisfaction, liberal time payment terms. Get the latest 1951 Allied Catalog. Keep it handy-it will save you time and money. Send for your FREE copy!

ALLIED IS YOUR TELEVISION HEADQUARTERS

TVp with TV, depend on ALLIED! Count on us for the latest releases and largest stocks of picture tubes, component parts, antennas and accessories-plus the lates in TV ALLIED! If it's anything in TV-depend on ALLIED!

ALLIED RADIO

the World's Largest Radio Supply House EVERYTHING IN ELECTRONICS

Radar Tracks Shooting Stars

> Using radar echoes, the speeds of meteors coming from outer space are recorded at 100,000 miles per hour

By PROF. A. C. B. LOVELL and J. G. DAVIES*

Fig. 1—Search transmitter at Cheshire, England, uses ex-army radar equipment.

METEORS, or "shooting stars," are tiny pieces of stone or iron which rush into the ear'th's atmosphere at speeds thousands of times faster than an express train. Fortunately for us they get very hot by friction in the highest layers of the atmosphere and burn up.
*Jorlrell IBank Experimental Station (University of Manchester) (heshire, England.

They rarely penetrate lower than about 50 miles above the earth's surface. In this process of evaporating they leave a trail of light several miles long.

Until recently the visual or photographic study of these meteor trails was the only way to obtain information about them. Although they could not be observed in daylight, and although their study was severely handicapped by

Fig. 2-Radar transmitter circuit has $50-\mathrm{kw}$ output with 8 -microsecond pulses.
cloud or bright moonlight, we knew that 100,000 millions of these pebbles were pouring into the earth every 24 hours. We also knew that occasionally the earth rushed through an extraordinary concentration of this debris, producing what is known as a meteor shower. But in spite of more than 100 years of observation the astronomers do not know for certain where these vast numbers of pebbles come from.

During the last few years radio has been used to study these meteors and several of the outstanding problems are beginning to be solved. In this article we shall describe some of the basic radio techniques which are now in use.

Meteor defection by radio

When the meteor burns away in the high atmosphere it leaves behind for a very short time a dense trail of electrons, as well as the streak of light by which we see it. This electron trail enables us to detect the meteor by radio. The fundamental process is very simple. A radio wave sets the electrons in the trail into vibration, and while they are oscillating they reradiate a small amount of the energy in the incident radio wave. This energy will travel back toward the earth, and if we have a sensitive enough receiving set, we can detect these radio waves which are scattered from the trail. Both pulse and c.w. methods are used. The frequencies used are generally higher than 20 mc . otherwise one gets trouble from the reflections from the ionized E and F regions, and the results are difficult to interpret.
There are many more faint meteors than bright ones. Thus the more sensitive the apparatus the more meteors will be detected. For example, in a pulse equipment, using a peak transmitter power P, an aerial with a power gain G , a receiver note factor f , and a wavelength λ. it can be shown that the faintest meteor detectable will depend on: $\quad G \sqrt{\frac{\mathrm{P} \lambda^{3}}{r}}$.
In this article we shall first deccribe a pulse apparatus working on 72 mc in which the transmitter power and receiver sensitivity were such that the number of echoes seen corresponded very closely with the number of meteors which could be seen by a single visual observer on a clear night.

72-mc pulse apparatus

In this apparatus-now in use at the Jodrell Bank Experimental Station in Cheshire, England-an ex-army radar transmitter forms the basis of the meteor transmitter shown in Fig. 1. The transmitter consists of an oscillator stage with two British Service tubes, type VT-98 triodes (Fig. 2). These run

One way to make America stronger is to give our Armed Forces more and better weapons-built without wasting the nation's defense dollars. An example how this can be done is seen in our vital guided missiles program.

Using an electronic calculator -an analoge computer developed by RCA Laboratories for the U.S. Navy -the designs of guided missiles can now be tested in the drawing board stage, to save time and money. Information representing the rocket's design is fed into RCA's calculator. Other informaton represents flight conditions, and the two are then combined to show how the rocket performs. . . at any split second.

Millions of defense dollars - thousands of hours - are saved by these mathematical "test flights." And RCA's calculator will test any manmade device that flies or swims . . . planes, ships, bullets, shells, rockets, submarines.

See the latest in radio, television, and electronics at RCA Exhibition Hall, 36 West $49 t h$ St., N. Y. Admission is free. Radio Corporation of America, RCA Building, Radio City, New York 20.

Models of guided missile and bomber about to meet on the plotting board of RCA's computer.

RADIO GORPORATION of AMERIEA
World Leader in Radio - First in Television
at 20 kv on the plates and are tuned with resonant lines in the plate and grid cimeuits. The oscillator is cathodecoupled to a grounded-grid amplifies stage of two similar tubes, and the output is lapped off the plate lines. This transmitter gives a peak power of about 50 kw for 8-microsecond pulses at a
is used. but more often it is the array of Yagi elements mounted on an old army searchlight shown in Fig. 3. This gives a beam of ± 10 degrees width, and can be pointed at any part of the sky. The output of the receiver is displayed on an A-scope display, which can be seen in Fig. 4. It also goes to an auto-

Fig. 3-A Yagi antenna mounted on army searchlight scans sky.
repetition frequency of 600 pulses per second. The filament supplies are fed to the cathodes via coaxial ("unity-coupled"-Editor") chokes, which also act as coupling transformers.

The receiver is a normal superhet with grounded-grid triodes in the first two stages to give maximum sensitivity. The i.f. is at 10 mc , and has a bandwidth of 1 megacycle. Negative pulses can be applied to the suppressors of three of the five i.f. tubes to suppress the receiver during the transmitter pulses, and to blank out unwanted echoes from the local hills.

Both transmitter and receiver are connected to the same aerial system with a spark-gap switching arrangement. Sometimes a simple dipole aerial
matic recorder which will be described later.

A photograph of a typical echo from a meteor trail is shown in Fig. 5. The number of meteors seen with this apparatus is close to that seen by a visual observer under good dark sky conditions, and is normally from 2 to 10 per hour. When the showers occur the hourly rate rises to 50 or 60 for several nights in succession. During a remarkable event on October 10, 1946, it increased by 5,000 times to 160 per minute between midnight and $3: 30$ a.m. On this occasion the earth passed close to the Giacobini-Zinner comet, and was bombarded for six hours as it crossed the orbit.
In similar piece of equipment on 73

Fig. 4-Receiver at Jodrell Bank site is viewed on A-scope unit seen here.
me, two fixed beamed aerials are used, each consisting of six Yagi elements, shown in Fig. 6. The signals from these two aerials are fed separately into two intensity-modulated displays and photographed on a continuously moving film. An echo from a long-duration meteor trail on this apparatus is' shown in Fig. 7. The pulses are doubled for easy identification of the short-duration echoes aqainst the noise background.

Such radio techniques enable observations to be made in daylight. Through this ability some striking discoverics have been made. The apparatu's described above has been used at Jodrell Bank since 1946, and a remarkable sequence of intense meteor showers only active during the summer daytime was discovered in the summer of 1947.

Measurement of velocities

Perbaps the greatest hindrance to rapid progress in the study of meteors has been the very great difficulty of measuring the speed with which they enter the atmosphere. Since they are travelling, at a speed of nearly 100,000 miles per hour, it is not surprising that this measurement has been hard to make. Without an exact knowledge of the speeds of meteors it is not possible to decide where they come from-nor even to decide whether they are al] localized in the solar system or whether some come from interstellar space. It was therefore important to develop radio methods for velocity measurement. The one to be described was dereloned at Jodrell Bank and has been in regular use since 1947 for measuring these high velocities.

The radio echo seen on the apparatus described above comes from the completed electron trail of the evaporated meteor. The velocity recorder works by studying the echo from the trail while it is being formed. The apparatus measures the speed with which the electron trail is made. While the trail is being formed there are intensity fluctuations in the echo returned to the receiver which are exactly analogous to the fluctuations in the light near the edge of a sharp shadow on a screen--the familiar optical phenomenon known as diffraction. The fluctuations in amplitude to be expected as the meteor passes the per-

Fig. 5-A picture of a meteor trail.
 EASY BUDGET PLAN!

ANOTHER HYTRON FIRST FOR YOU!
No need to miss that profitable picturetube sale - just because the customer doesn't have the cash. The original Hytron Easy Budget Plan saves the sale. Gives you a competitive edge. Hytron has arranged the details for you. A national credit organization, with facilities in all IV areas, stands ready to serve you.
Find out how you can put this wonderful, timely Hytron plan to work right now ! Write for complete information today.

Fig. 6-Two fixed beam antennas are used on 73 mc , each having 6 Yagi elements.
pendicular point from the station to the trail are shown in Fig. 8. The horizontal spacings OA, OB, OC, etc., can be shown to be $1.2 \sqrt{\mathrm{R} \lambda}, \quad 1.9 \sqrt{\mathrm{R} \lambda}$, $2.3 \sqrt{\mathrm{R} \lambda} . \lambda$ is known, the range R can be measured on an A-scope display. Hence if we can measure the time \mathbb{T}_{13} for the trail to form from A to B etc., then the velocity of the meteor is given by: $A B / T_{A B}$ etc. The great difficulty is in measuring these time intervals. If

Fig. 7-Long duration meteor trail echo.

Fig. 8-Meteor position amplitude curve.
typical values, $\lambda=4 \mathrm{~m}, \mathrm{R}=300 \mathrm{~km}$, are inserted, we see that OA is only about 1 km . But an average meteor is moving at about 40 km per second. hence the time interval between O and A is only of the order of 0.025 seconds or 25 milliseconds.

In the velocity recorder, which can be seen in Fig. 4, photographs are taken of two cathode-ray tubes, each with a single-stroke time base. One time base lasts for about 10 milliseconds, and is used to measure the range of the meteor by standard radar methods; the second time base lasts for 0.1 seconds, and displays the first 60 echo pulses received side by side. A photograph of these pulses appears in Fig. 9. The time bases are triggered simultaneously, by the first echo pulse received that is greater than a given amplitudeabout twice the receiver noise level. The transmitter is pulsed at 650 pulses per second, so that the separation between pulses is $1-5$ milliseconds. Thus the time intervals between the maxima and minima can be measured with great accuracy.

The recorder unit

A block diagram of the recorder is given in Fig. 10. The output from the receiver is fed to the cathode-ray tubes via an amplifier, and is also used to trigger the time bases via the discriminator unit. This unit is required to separate the echoes from impulses caused by atmospherics or ignition systems. Its operation will be described in
detail below, and a schematic of the discriminator unit appears on page 54.
In addition, a set of relays is triggered from the discriminator. This flashes a light onto a clock, recording the time of occurrence, and, after the photograph has been taken, operates the camera motor and resets the instrument for the next echo. The direct signal from the transmitter, and the echoes from ground sources nearhy, are removed by suppressing the receiver for the perind during and inmediately after the transmitter pulses.
The discriminator operates on the duration of a single echo pulse. This is equal to the transmitter pulse length, and is about 8 microseconds, while the duration of a single noise impulse is determined by the receiver bandwidth and is 2 or 3 microseconds.

The circuit diagram is given in Fig. 11, and the waveforms in Fig. 12. Tubes V1, V2, V3-a, and V4 form an a.v.c. amplifier with cathode follower output, the receiver noise at the cathode of V3-a being about 20 volts peak-to-peak, and positive in sign. V5 is a limiter stage, with about -20 volts bias on the grid. Hence it is normally cut off, but begins to conduct as soon as any signal rises much above the noise level. Grid current limits the signal at about twice the receiver noise level, producing waveform B (Fig. 12) on the plate of V5. V7 comprises the discriminator stage, in effect an infinite impedance detector circuit, and a cathode follower, the output from which is shown at C in Fig. 12. On the leading edge of the pulses, the first halt-originally only passing about 150 microamperes-is cut off, and the cathode falls at a rate determined by its stray capacitance. On the return stroke, however, the tube conducts heavily, and hence returns very rapidly to its original potential. This is important, as interference caused by ignition systems frequently consists of a train of impulses with very little interval between them, and such interference could be confusing.

The effect of this circuit is first to reduce all impulses to the same amplitude, and then to give them an amplitude that depends on the duration

Fig. 9-Recorder unit time base photo.

Fig. 10-Recorder unit, block diagram.

Fig. 11-The discriminator unit which detects the meteor echo pulses and passes them to the camera relay circuits.
of the pulse. The remaining circuit consists of a phantastron set to trigger on pulses greater than a certain duration (set by R30) which triggers the time-base circuits, and operates the
relay coil RY. The contacts on the suppressor grid of V5 are closed by the relays, and prevent the circuit being retriggered until the camera is reset.

Many thousands of meteor velocities

AN EXPERIMENTAL CHASSIS

Like most ardent experimenters, I never seemed to have a chassis which was punched just right for the circuit I happened to be building at a particular moment. Tiring of using the same old battered chassis for every experiment, I developed two small basic units from which larger chassis can be constructed. This setup has the following advantages: (1) Socket holes are always where I want them; (2) wiring can be systematic with easy access to A-, B-, and grcund leads; and (3) the chassis can be used for breadboard experiments or for a finished product.
The drawing shows the shapes and sizes for the basic units. The U-shaped socket strip is punched in the top for a socket and in one side for two po-
tentiometers or similar controls. An eight-point mounting strip is located close to one side of the socket strip to support power leads which run the length of the completed chassis. Each socket strip has three small angle brackets on each open side. These brackets are aligned so the strips can be bolted together or to the end pieces.

The end pieces have 10 holes for mounting pilot lamps, insulated jacks, plugs, terminals, and rotary switches. Two additional mounting holes are provided for toggle switches. The bend in the end pieces makes a steady support for the chassis when upside down.
The photos show an amplifier constructed on the chassis and the end piece and socket strip.-Otto von Gucricke

have been measured by this type of recorder, enabling great progress to be made in some of the fundamental problems of meteor astronomy.
Great use has been made by workers at Ottawa and Stanford of c.w. techniques for special purposes. For example, if c.w. is used, the above diffraction photographs appear as continuous records and more zones can be measured. This is especially true if the reflected wave from the trail is allowed to beat with a local ground wave. In this cas: the fluctuations can be seen before the perpendicular point O (Fig. 8), since a local reference phase is available be-

Fig. 12-The discriminator waveforms.
fore the perpendicular reflection takes place. Of course the range of the meteor has to be measured by using a subsidiary pulse apparatus. Incidentall: these c.w. fluctuations can be heard as the so-called Doppler whistles, since the period of the oscillations lies in the audible range. Such whistles have been picked up by amateurs and can be heard easily if they can tune to an unmodulated carrier at several miles distance on a frequency of about 20 or 30 mc .

In this short article we have concentrated on describing some basic techniques used in the radio observation of meteors. The results obtained during the past few years have revolutionized the science of meteor astronomy. The work is also of very great interest in physics, since a new tool now exists for studying the conditions in the high stratosphere, and invaluable data is being obtained about such diverse subjects as upper atmosphere wind motions and the processes of ionization.
-end-

2NewIrio Products

TRIO TV ROTATOR AND DIRECTION INDICATOR

TWO HEAVY DUTY MOTORS For Trouble-free • Two Direction Rotation

Here's the rotator that provides the ultimate in trouble-free dependable operation. Designed to support the heaviest TV arrays - even in $80 \mathrm{M} . \mathrm{P} . \mathrm{H}$. winds! This outstanding rotator has undergone extensive ifests for three years, standing up under every abuse and temperature extremes.
Here, indeed, is the rotator that abolishes TV callback problems!

Two Heavy Duty Motors

Two 24 volt motors are used - one for clockwise and one for counterclockwise rotation. Even if children play with the unit and leave it on continuously, a motor cannot burn out since load on a single motor is never on more than 50% of the time!
Positive acting electrical stops at both ends of 360° turn eliminates lead damage.

Compare These Features

Indicator always shows exoct antenna position.

- Cast TENSALLOY alumanum mast holder withstands 4500 lbs bending movement.
- 11/16 steel shaft withstands 4500 lbs. bending move. ment
- Automatic Electro-Mechanical Brake - reduces coasting to minimum
- Can be fastened to any pipe up to $2^{\circ} O D$
- Two direction rolation
- All-aluminum case - no cast zinc!
- Numbered terminal boards on rotator and indicator
- Turns 1 RPM, lifetime lubricated
- Ball-bearing end thrusts on shafts
- Ideal for 10, 6 and 2 meter amateur use

NEW TRIO All Alluminum TOWER

Weighing less than a pound per foot, this sturdy, extremely handsome, all weather-proof triangular tower represents a great refinement in streamlined appearance and installation ease over all others. Its allaluminum components permit the most flexible arrangements for construction of the exact tower needed for any installation.
Tower may be raised from horizontal position in heights up to 40 feet. For additional height, sections may be added from bottom.
Comes in 5 foot sections, a bottom section, a top section and as many center sections as desired.

FEATURES

- Sturdy, Yet Light In Weight - Less Than A Pound Per Foot
- Forever Rust Prool
- High Quality Extruded Aluminum
- Interchangeable Sections
- Pxeferred Riveted Construction . . . No Welded loints
- Dual Swivel Base -180° and 360° permits vertical or horizontal plane mounting
Dual Swivel Base 180° and 360°
- Low Installation Cost
- Completely Cartoned For Protection In Shipping

TRIO 2-CHANNEL YAGIS
 (Models 445 \& 479)
 Rapidly besemins the most
 popuiar in most wanigd TV
 antenna in Amorica. Avail.
 able for channels 4 and 5 , and channels 7 and 9. Providet
 gain on two ehannels equal to
 eny two conventional 4 -
 element yogis!
 - Full 10 db Gain On \& Channelas
 - Lear Weight Per Gain Than Any Other TV

TRIO PHASITRON

Now available separately
(Model Mo.
PS-600)
The TRIO PHASI-
TRON originally pos Triol IV Con rolled Soutem IV Antenno Sy item, is now avail.
able wesalely tor TV
fet owners whe want to get the very beat results from thelr selt and antennas, or to hams and other
PHASITRON ects at * continuously variable tunins Stob and will provide an exact impedance mateh output impedance or booster to set input impedanct. Due to exect metehing, losres in line become nes. ligible and set performanes srestly improved.
May also be used to coordinate input from two or more antennas to provide added bylanced outpu!
oset. Write for Full details.

NEW TRIO TV ACCESSORY CONTROL UNIT

(Model Ne. RY-1)

A handy control enit that hides away inside or in beck ofthe
un automatic IInt
switch for boosker, rotator, TV lamp or ether acces. soris. By plusging the ling cords Irom theye accey sorits into the RRIO Control Relay Unit, ofl eccessonies ary furted on with the one twiteh confroling the TV set. Ouickly instelled without making any wiring changet in set.

How an Electronic Brain Works

Part X-The product of two binary numbers.
By EDMUND C. BERKELEY* and ROBERT A. JENSEN

|N THE two previous articles we discussed how a brain built around electronic tubes can store information, add, and subtract; and we drew up schematics for an adder and a subtracter (Radio-Electronics, June 1951, page 39).
The basic components which are required for an electronic brain have been * Author: Giant Brains. John Wiley \& Sons. Inc.
labeled as we have indicated in the table below:

Symbol	Name	
A	an AND circuit, or gate	
O	an OR circuit, or buffer inhibi-	
E	an EXCEPT circuit, or ing	
nP	a delay line, delaying pulses	
F-F	for n pulse times or flenic switch, or fliop	

Now let us see how we can use these
components to design an electronic multiplier, which can multiply two binary numbers together and give the product. A circuit which will multiply is shown in Fig. 1. It contains 17 components, which are connected by lines bearing arrows, along which pulses travel in one direction. This circuit has seven input lines, numbered terminal 1 to terminal 7 , and one output line, num-

Fig. 1-This multiplier circuit has 17 components. There are 7 input lines and 1 output line where the product appears.

bered terminal 8. The result of the multiplication, the product, comes out on the output line, and the two factors of the multiplication, the multiplicand and the multiplier, come in on lines T1 and T2.

All information travels through this circuit in pulses serially along one line, and so the scheme of the circuit could operate for binary numbers as large as 50 or 100 digits, just by altering the length of the delay lines. To explain the circuit operation, we shall assume that we are going to multiply two four-digit binary numbers. We shall multiply binary number 1101 (one-one-oh-one, or one eight plus one four plus no two's plus one one, or thirteen) by the binary number $10: 11$ (one-oh-one-one, or one eight plus no four's plus one two plus one one, or eleven). The answer will be 10001111 (the sum of $128,8,4,2$, and 1, or 143, which of course equals 13 times 11). Since the answer will be eight binary digits long it is convenient to specify that the multijplier circuit operates in six machine cycles, each handling eight pulses corresponding to eight binary digits. The reason for eight pulses is obvious; that for six cycles will appear later.

This example of multiplication, by the way, is the same example worked out with relays that was discussed in the December, 1950, article of this series, Part III. The comparison of the multiplication there using relays and the multiplication here using electronic tubes is instructive, if any reader cares to look it up.

In the first cycie, the multiplicand 1101, in the form of a series of eight pulses, or a binary number, 00001101 , enters along line T1. The number shows the timing of these pulses represented in order from right to left, the earliest pulse being at the right.

Note well that on any line where the direction arrow points to the right, a regular binary number will represent pulses in the proper time sequence. We have avoided writing binary numbers, or series of pulses. on lines directed to the left because the sequence of pulses and the regular way of writing digits in the number would be opposite. For later cycles, we write the binary numbers of eight digits one under another. This helps to see without difficulty the pattern of as many as 40 or 48 consecutive pulses.
The series of eight multiplicand pulses go into the 8-pulse-time delay line D1, and they will accordingly issue in cycle 2 as 00001101 , and apply for admission at the door of and circuit A1, except circuit E1, and except circuit E2.

FLIP-FLOP F-F1 controls admission to the ExCept circuits E1 and E2. Because of the pattern of reset pulses (see later discussion) coming to this flip-flop, the except circuit E1 is inhibited, while E2 is not inhibited. Consequently, the pulses go through E2, and through the one pulse-time delay line D3, through the noninhibited Except circuit E3, and round the loop through D1 again. As a
result, the multiplicand is shifted, to the left one digit and the output from the delay line D1 of the numbers applying for admission to the and circuit A1 is therefore as follows:

Cycle	Number
1	00000000
2	00001101
3	00011010
4	00110100
5	01101000
6	00000000

In the first cycle also, the multiplier 1011 enters as a series of pulses 0000 1011 into the one pulse-time delay line D4 and the seven pulse-time delay line D2, and goes round the loop through delay line D2 in such a way that there issues from the loop the following numbers:

$$
\begin{array}{cc}
c_{\text {rrele }} & \text { Number } \\
1 & 00000000 \\
2 & 10001011 \\
3 & 0110011 \\
4 & 1000101 \\
\frac{10}{3} & 10110001 \\
6 & 00000000
\end{array}
$$

The first digit is carried around to the eighth digit's place by D2 and E4 in each cycle. Because the delay line is only 7 pulses long it advances the pulses one step. In cycle 3 , for instance, we no longer have the number 1011 at the right-hand side, but 101, the other one having been attached to the end (left side) of cycle 2 , where it replaces the zero that would otherwise be there. The first digit in any one of these numbers, in the sequence in which they pass through the circuits, is at the right, and the last one at the left. This follows our regular practice in adding or multiplying on paper, but not in writing down figures. These numbers now continue and apply for admission at the door of AND circuit A2.
The other line going into and circuit A2 is line T3, called "timing-pulse input from time-pulse selector," and the pulses (or numbers) that come in on this line are as follows:

Cycle	Number
$\mathbf{1}$	000000000
$\mathbf{2}$	00000001
3	00000001
4	00000001
5	00000001
6	00000000

These are standard pulses and would accordingly apply for any four-diget multiplier.

Their purpose is, we shall see later, to allow a single digit of the multiplier to go through the and circuit, and the timing is such that just the proper digit of the multiplier is allowed to go through the and circuit.
Now an and circuit performs the operation of "both," i.e., logical multiplication, operating digit by digit, pulse by pulse. Consequently, the numbers that issue from the and circuit are the logical product, according to the following very simple table, of the numbers coming in:

\[

\]

So the numbers (or pulse series) coming out of and circuit A2 are now:

Cycle	Number
1	00000000
2	00000001
3	00000001
4	$0000000!$
5	00000001
6	00000000

The output of AND circuit A2 leads to the "set" side or left side of Flip-flop 2. The "reset" side or right side of FLIPFLOP 2 receives a series of reset pulses (see later discussion) as follows:

Cycle	Number
1	10000000
2	10000000
3	10000000
4	10000000
5	10000000
6	10000000

These are the two inputs of the flip-flop. So what comes out?

A flip-flop conducts on one side and not on the other side, depending on the last pulse that has come in on either side. Specifically:

The operation of a flip-flop is ambiguous, not defined, if the last pulse comes in simultaneously on both left and right sides. So before any inputs are acceptable to a flip-flop there must be no cases of 1 and 1 occuring at the same time.
Applying this rule we can calculate the output of FLIP-FLOP 2 as follows:

Input			Output	
Cyele	Left S'de	Right Side	Left Side	Right Sid
1	000¢mbob0	10000000	0???????	1???????
2	000000001	10000000	01111111	10000000
3	- 1000000060	10000000	01111111	10000000
4	006000001	10000000	00000000	11111111
5	06000001	10000000	01111111	10000000
6		10000000	00000000	11111111

Wherever we see a zero on one side of the flip-flop output, we must see a one on the other side. This is merely equivalent to saying that one side or the other, but not both sides, of the circuit are conducting at any given time.
We may note that the output of the right side of FLIP-FLop 2 is not used in this circuit, but is available and might be useful somewhere else in the computer. The output of the left side, however, goes to AND circuit A1 and is there very useful. The flock of 1's on cycles 2,3 , and 5 allows the shifted multiplicand to go through A1 in the case of the first, second, and fourth multiple, and this is precisely what we want. Furthermore, the fourth multiple of the multiplicand will never be more than 7 digits, and so the change of the flip-flop at time 8 in each cycle does not interfere with the multiples of the multiolicand.

AdDER at cycle 2 takes in the first multiple of the multiplicand, adds it to 0 coming in on the other line, and passes it around the loop through the noninhibitory Except circuit E5 to the partial sum register, the 8 pulse-time delay line D5. One cycle later this first multiple comes out, going to the adder. But now it is matched in time (cycle 3) with the second multiple, and the adder produces the sum of the two of them, and

Rauand Now Offers The fist

> Rauland's new low potential electrostatic-focus picture tube is not just a "defense period" substitute but a permanent and major advance in television cathode ray tube development

FOCUSES with D.C. voltage already available from the receiver's power supply.

ELIMINATES focusing coils and magnetssaves critically scarce copper and cobalt.
REQUIRES NO re-engineering of present television chassis . . . NO added high voltage focus circuit . . . NO added receiver tubes-NO additional components except an inexpensive potentiometer.

BETTER in all ways! Not only saves materials but also gives an actual improvement in picture quality because the over-all focus is better . . . and because it is completely stable in focus under considerable variations in voltage.

This new Ranland development is now arailable in substantial quantities in 17 and 20 inch rectangular tubes. For further information, address...

THE RAULAND CORPORATION

Heathkit model 0.6...PUSH-PuLL... $5^{\prime \prime}$ OSCILLOSCOPE KIT

The new Hearhkit $5^{\prime \prime}$ Push-Pull Oxcilloscope Kit is agail the best buy. No other kit offers half the feacures - chect thein.
Measure either AC of DC on this new scope - the first oscilloscope under $\$ 100.00$ with a DC amplifier.
carhode fallower ampiner has frequency compensated step attenuator input into a cathode follower stage. The gein control is of the non frequency discriminating type-arcurate response at any setung. A push-pulh pentede stage feeds the cR tube The horizontal amplifiers are direct wounled to the (R aube and nay be used as either AC or DC amplifiers. Separate binding posts are provided for AC or DC. either AC or D amplifiers. Separate binding posts are provided for $A C$ or D -
The mulivibrator type sweep generator has uea frequency compensation for the wide range it covers: 15 cycles to over 100.060 vyiles.
The new model $0-6$ scope uses 10 tube in all. induding $5^{\prime \prime} C R$ tube. Has inproved amplifiers for betrer response uneful to 2 megarydes. Tremendous sensitivity .04V RMS per inch horizontal-.09V RMS per inch vertical. Only Heathkir Scopes have all the features.

New husky heavy ducy potric transformer has so\% more laminations. If runs cool and has the lowest possible magnetic hicld. A complere eletrostatic shield covers primary and other necessary windings and has lead brought out for proper grounding

The new fiter condenser has separate sections for the vertical and horizontal screen grids and prevenss interaction between them. An-improved incensity cifcuit provides almpsit double previous brilliance and tetter imensity modulation.

A new synchroaization circuif allows the trace to be synchronized with either the positive or nedative putse, fir imp rean feasure in obseving the complex pulse encoumered in television servicite

Model 0-6

Shipping Wt. 24 lbs
comple:c, all rubes, cabinet
 $\$ 3950$

NEW INEXPENSIVE Feathkit ELECTRONIC SWITCH KIT

The companion riece to a scope - Feed two different signals outpur to a scope, and you can observe both signals - each as an individual race. Gain of each input is casily set (gain A and fan B controls) the switching frequency is simple cuency controls) and the races guency be superimposed for comparison or scparated for indi ridual srudy (position control) Use the switch to see distor ion. phase shift. clipping due to improper bias. both the in-

Model S-2
$\$ 1950$ put and output traces of an amp
ve genctator over limited range
The kit is complete; all tubes, switches, cabinet powet ransformer and all other parts. plus a clear detailed construcion manual.

\$550

Heathkit $30,000 \mathrm{~V}$ DC PROBE KIT

A new $30,(\mathrm{yOO} \mathrm{V}$ DC Probe Kit to handle high voltages with safety. For TV service work and all other high voltage appli and all othet high voltage applicolor molded plastic - Red body and guard - ict black handle. Comes with connector, cable, and PLS5 rype plug. Plugs into Heathkit VTVM so that 300 V scale is conveniently multiplied by 100. Can be used with any standard 11 megohm VTVM.

Shipping Wt. 2 lbs.

Feathkit

RF PROBE KIT This RF Probe Kit comes complete with probe housing, crystal diode detector connector, lead and plug and all other parts plus clear assembly instructions. Extends range of Heathkit VTVM $10250 \mathrm{Mc}+\frac{1}{+} 10 \%$. Works on any 11 megohm input VTVM. Specify No. 309 RF Probe Kit.

\$550

New MODEL V-4A

Heathkit VTVM KIT

The new Heathkit Model V-iA VTVM Kis the ures up to 30,000 Volts DC, and 250 megarscle when used with accessory peolos - . think of all in one electronic instrament more usetul than ever before. The AC Volemerer is so fiar and extended in its response $\{ \pm$, db irom 20 cyctes to 2 megacycles) that it eliminases the need for separate expensive Ar VTVM1s.

The new 200 microampere, merer with quality Simpson movement fire times as sensitive as the commonty wet 1 NA meter) has a shater proof plassic motes face for maximum protection. Muter hess all the desirable scales and indicates $A C$ veles, $D C$ voirs uhms, db (direct reading). and eveta has special zero center marking tur quick FMither ment

There are six complete rankes for each funt tion. Four functions give total of 24 tanges. The 3 volt range allows $331 / 3 \%$ of the stale for reading 1 volt, as against only $20^{\circ} \mathrm{e}$ of shat scale on the 5 volt types.

New $1 / 2 \%$ ceramic precision tesistors ate the most accurate commercial type available - you find the same make and quality in the fiaess laboratory equipment selling for theusands of dollars. The entire voltage divider decast ases

Hociel V-4A Shipping Wt. 8 libe Note New Low Price $\$ 2350$ Both AC and DC voltmeter measurcmerss Ust a push-pull electronic volemeter circuic and the meter circuit makes the metcr bu:n our groat Wectonic ohmmerer circuit meas ures resistance over the amazing range of $1 / 10$ ohn fo ont bilhon ohms, all with internal 3 volt battery. Ohmmeter batterits mount on the chassis in snap-in mounting for easy replacement.

Voltage ranges are full scale - 3 Vols, 10 Volts, 30 Volts, 100 Voiss, 300 Volts. 1000 Volts. Complete decading werrage without gaps.
The DC probe is isolated for dyatric , measummers. Nigligible circuit loading. Gets the accurate reading without disturbing the operation of the equipment under test Kit comes complete: cabinet, transtormer, Smpsur meter, ress leads, complete assembiy and instruction manual.

Feathkit TV ALIGNMENT GENERATOR KIT

Here is an excellent TV Alignment Generator designed to do TV service work quickly, easily, and properly. The model TS-? when used in conjunction with an oscilloscope provides a means of correctly aligning television receivers.

The instrument provides a frequency modulated signal covering, in two bands. the range of 10 to 90 Mc . and 150 to 230 Mc . - thus. ALL ALLOCATED TV CHANNELS AS WELL AS IF FREQUENCIES ARE COVERED.

An absorption type frequency marker covers from 20 to 75 Mc . in two ranges - thercfore, you have a simple, convenient means of frequency cheching of IF's, independent of oscillator calibration.
Sweep width is controlled from the front panel and covers a sweep deviation of $0-12 \mathrm{Mc}$. - all the sweep you could possibly need or wamt.

And still other excellent features are: Horizontal sweep voltage available at the front panel (and controlled with a phasing control) - both step and continuously variable attenuation for setring the output signal to the desired tevel-a convenient instrument stand-by position - vernier drive of both oscillator and marker tuning condensers - and blanking for establisbing a single trace with base reterence level. Make your work casier save cinee, and
repait whth confidence - order your Heathkit 'IV Alignment Gencrato now

Heathkit SIGNAL GENERATOR KIT

The new Heathkic Siknal Generator Kit has dozens of improvernens. Covers the extended range of 1601 Kc to 50 megaceles on funcla. mentals and up to 150 meracseles on usecul cideal as a marker oscillator for IV. Ourpur level can be convenienty see by means of hoth step atenuator and contimuously variable ourgut conerols. linstrument has new miniature $\mathrm{HF}^{\text {f }}$ tubes to casily bandle the high frequencies covered.
Uses 6e 4 master encillator and oCf sine wave audio ossillator. The kir is ramformer operated and a husky selenium rectifier is used in the power sumply. All coils are precision wound and checked for salibration making only one adiustment necessary for New sine wave andio oscillator provides nternal modulation and is also available for external audio testing. Switch provided allows the oscillator to be madulared by an external audio oscillator for fidelity testing of reccivers. Comes
complere, all rubes, cabhinct, test leads. every part, Phe insruction manual has secp-by-seep instructions and pictorials. It's easy and fun to build a Heahhit Model SG-6 Signal Generator

Heathkit

SIGNAL TRACER

and UNIVERSAL TEST SPEAKERKIT

The popular Heathkit Signal Tracer has disw been combined with a unaipersal test speaker at no increase in price. The same high quality tracer follows signal from antema to speaker - locates intermiteens - finds de fective parts quicker - saves valuable service time - kives greater income per service hour W'orks equally well on broadcase. FM, or TV receivers The eest speaker has an assortment of switehing ranges to masch either pushpull or single output impedances. Also reses microphones. pickups and PA

\$1950

IIOV 60 cycle puwer transformer, tubes, test probe all neces. sary pares, and detailed instructions for assembly and use.

Heathkit

CONDENSER CHECKER KIT

Heathkit TUBE CHECKER KIT

Test your cubes the modern way - dynamically - the simplest, yer fastest and surest methendyour Heathkit has a switch for each tube element and me.sures that element - ino hyance all the open or shoried edements slipping hy, all the adnanages of the mutual conduc tance sype without the slow cumbersome time consuming setups. Chechs for opens. shorts: ment tap continuity, and emission.
This Tube Cherker has all the
heautiful 3 color HAD.?.GOOD metre complete selction of voltages - roller clare listing hundreds of tubes including the new 9 pin miniatures - Hincst quality Ceneralah lever switches - high grade birch, counter. rype cabines-conemuously variable line adiust control- every feature you need to sell tubes properly. The most modern type tube checker with complere protection againse obsolescence. Uies only the hest of pares - rusged thesest of Mallory and Centralab switches and controls, complete ser of sochets for all sype tubes with blank spare for future types. Fase action, gear driven roller chart quickly locates the setting for any rype qube. Simglithed switching cuts necessary eevting tome to a minmum and saves valuable service time. Simple method allows instant setup of new rube types without waiting for factory data. No mateer what the arrangement of rube elemenes is, the Heathit dexible switching merthod easily handes it. Order your Heathkit Tuhe Checker Kit enday and see for yourself that Heath again sales you twothirds and yet retains all the quality. Complete with instructions, all parts, and cabituer

$\begin{aligned} & \text { Model TC-1 } \\ & \text { Shipping Wf. } \\ & 12 \text { lbs. }\end{aligned}$

Checks all types of condensers - paper mica, ceramic, electrolytic. All condenser scales are direct reading and require no charrs or multipliers. Covers range of
00001 MFD to $1000 \mathrm{MPD} A$ Condenser Checker that to test and polarizing voltage for 20 to 500 V provided. Measures power factor of clectrolytics between 0% and sore and reads resistance from 100 ohms to 5 megohms. The magic eye indicator makes testing easy. The kit is 110 V 60 cycle transformer cahinet, calibrated complete with rectifier tulx. magic eye rube cahinet, calibrated panel and all other parts. Has clear derailed inveructions for assembly and use.
Model C-2
Shipping Wt. 6 lbs.

NEw \#earkkit

HANDITESTER KIT

A precision portable volt-olim-milliammerer. Uses only high quality parts - All precision $1 / 2 \%$ resistors, three deck switch for trouble-free mounting of parts. specially designed bateery mountink bracket, smouth acting ohn adjust control. beaturiful molded bakelite casc, 400 microamp meter movement, cte
Dr and AC voltage ranges $10-30.300-1000$ Soon Ohms range 0.3000 and 0-300000 Range Milliamperes o. 10 Ma. 0.100 Ma. Easily $\$ 1350$ torial diagrams.
Model M-I
Shipping Wt. 3 lbs

new Freathkit sine and square wave AUDIO GENERATOR KIT

Feathkit laboratory RESISTANCE DECADE KIT

$\$ 1950$

An indispensable piece of laboratsy equipment - the Hearhkit Resiscance Decad Kit gives you recistance ser N ONE OHM STEPS for N ONE OHM STEPS for preatest accuracy sistors ceramicbody tipe re istors and highegt quality used.
Designed to match the im Redance bridge above, the heautiful birchade Kit has a herutiful birch cabiner and build. and comes complate with all parts and construc. won manual.

MAIL TO THE

heath company BENTON HARBOR 20, MICHIGAN

sends that around the loop to the par-tial-sum register again. In this way, the multiplication proceds by successive addition of selected shifted multiples, and a breakdown of the problem will then appear as follows:

$\begin{gathered} \text { Multiplication } \\ 1101 \\ \times 1011 \end{gathered}$	Partial Sum at Cycle
1101	2
+ 1101	
$=100111$	3
$+0000$	
$=100111$	4
+ 1101	
$=10001111$	5

We must now get the final answer 10001111 out of the circuit into some other part of the machine where we can make use of it. We use FLIP-flop 3, operating it with a "readout timing pulse from the time selector" on the left side as follows:

Cycle	Number
1	000000009
2	00000000
3	00000000
4	000000000
5	000600001
6	000000000

together with a reset pulse on the right side of the flip-flop will then be as follows:

Cycle	Number
1	11111111
2	000000000
3	00000000
4	00000000
5	00000000
6	11111111

Here is where-and why-we need a cycle 6 in the multiplier circuit: to be certain that no stray pulses come out on the output line after we have received the product. The output of flipflop 3 accordingly will then appear as follows:

Cycle	Number
1	00000000
2	00000000
3	00000000
4	00000000
5	11111111
$\mathbf{6}$	00000000

This is the input on one side of the and circuit 3 . The other input coming from the adder is:

Cycle	Number
1	00000000
2	00001101
3	00100111
4	00100111
5	10001111
6	000001000

and as a result it may be seen the output is:

Cycle	Number
1	00000000
2	00000000
3	0000000
4	0000000
5	10001111
6	00000000

In order to clear the multiplicand, the multiplier, and the partial-sum registers, the EXCEPT circuits 3,4 , and 5 are used. The input to all of them comes in on line T5, and is in the usual listing,

The roofs of America "sprout" more towers by Penn than by any other manufacturer. The reason? Penn's constant product development engineering which has produced the following:
(1) The Teletower itself (2) the Thriftower (3) the Tenna-Mast Hardware Line (4) the adjustable roof mount (5) the universal motor mount (6) the built-in base (7) Penn's new self-supporting tower that carries two hundred fifty pounds head load without guying.

STAY TUNED IN . . . WITH TELETOWERS!

- Gives full cross-reference listing of exact and duplicate replacements
- Tells when to replace and what tests to make
- Tells how compliance, tracking pressure, weight affect reproduction and record wear
- Explains old-style and modern cartridge differences-illustrates finger-tip compliance test
- Gives best model for each type of installation
- Reveals how to make cartridge replacement sales . . . how to give your customers more record enjoyment

$$
\begin{align*}
& \text { Send for } \\
& \text { your FREE } \\
& \text { Replacement } \\
& \text { chart today }
\end{align*}
$$

Electro-Voice, Inc., Dept. E7-1 421 Carroll st., Muchanan, Michigan Send FREE Cartridge Replacement Chart

Name. \qquad
\qquad
\qquadb
as follows, and after this the multiplicand, the multiplier and partial-sum registors are ready for new signals.

Number
11111111
manot000
100000000
010004n0
11111111
1111111
In the sanne way, to reset the flipgops, the input of standard pulses from fie time-pulse selector is as follows:

Cycle	Fin-Flop 1 and 2	Flip-Flop 3
7	100060000	11111):1
2	100408000	0000000 at
	100000000	000000000
4	100000000	OU1000060
\therefore	160000000	0000000019
5	100000000	1111111

The eircuit is, of course, a block diadon. To convert it into working hardwave, a grood deal of attention will have to he given to the shape of pulses, the precise detailed timing of them, microscoond delays due to the length of cables along which they are traveling, etc. Dtseriptions or circuits of the components inside the blocks were given last month.
It should be emphasized once more That there are many ways in which the arcait can be improved, or otherwies designed. Some improvements will dabtless secur to readers of the

Fos example, F-F1, E1, and E2 can be avonlon if we give up optional storas of the multiplicand unchanged in registey D1; that is, if we make sure that t : maitiplieand and the multiplier do come in simaltancously to the multiplyims circuit. Actually, in a serial compute: it will be more convenient to have tre multipiicand come in at one time ard wait in the multiplicand register unzl the multiplier is ready and comes in at a later time. The circuit in Fig. 1 hes provided for this second more converient scheme.
Acknowledgment is made to Hems W. Schrimpf for many of the features of the multiplying circuit in this articie.

Divisiom

If we replace the adder by a suhtractor, and put in some kind of circuit for comparing the divisor with the pastial remainder from successive subtraction, and in still other ways modify the circuit of Fig. 1 so that we can use tre method of dividing that was illustrated in Part IV (January, 1951) of this series for a relay computer, then we can design a division circuit for binary rumbers.

But divisions do not occur as oftea as multiplications. Studies made some time ago in the Harvard Computation Laboratory indicated that a division occurred once for about every fourtetn multiplications. So why spend money on equipment for division, which you may use less than 8% of the time, if we can get division some other way?

You can get the result of dividing the number M by the number K if you mu\}tiply M by the reciprocal of K , which is $1 / \mathrm{K}$. And you can get the reciprocal $1 / \mathrm{K}$ by a process using multiplication. First, find some kind of reasonable first
approximation X_{1}; second, use the following formula over and over:

$$
X_{n}=X_{n-1} \times\left(2-K X_{n-1}\right) .
$$

It can be shown that a reasonable first approximation X_{1} is any number between 0 and $2 / \mathrm{K}$.

For example, suppose that we want to find $1 / 3$, which we know is equal to .38333 to five decimals, and suppose that we start off with a guessed first approximation .5. Then:

```
X 
X = .5 [2 -3(.5) | =.25
X:=.25|2-3(.25)1-.3125
    .3125|2-3(.3125)]=.33203
```

Thus we can get a fine result with just a few steps in multiplication. We can have our computer carry out division by programming our computer. We yield time; we save equipment. Over and over again this kind of compromise occurs in computer design. Division by successive multiplication, with special circuits for sensing good first approximations (which saved on the number of multiplications necessary), was the process built into the Harvard Mark II computer, now at the Naval Proving Ground, Dahlgren, Va.

This kind of scheme for use in automatic computers was first proposed, we believe, by Prof. Howard H, Aiken of Harvard.
(continued next month)

AUTOMATIC-FOCUS KINE

New picture tube with built-in-automatic focus has been announced by Du Mont. It eliminates the need for a focus coil, a focus control or other focusing methods used in magnetic and electrostatic kinescopes.

The new tube, the $17 \mathrm{KP4}$, is an allglass rectangular, magnetic- deflection, electrostatic-focus tube, with a grayfilter face plate and an external conductive coating. It is designed to work with an anode voltage of 16,000 and a maximum negative bias value of 125 volts.

\because

ostime
Gluerse.
sis
"Left, I said! Wassamatter, aren't you tuned in?"

couldiveridu
 *Registared Jrademark
 "Just as Good" -IS A FABLE!
 Don't be 'sold' an imitation

BE BRAND CONSCIOUS - DEMAND a genuine TELREX

 for the ultimate in TV reception. Many imitations short cut and cheapen the product so that results are of ten disappointing.The genuine TELREX "CONICAL-V-BEAM" is manufactured in 24 models-one to meet every TV reception problem, whether in a primary, secondary, fringe, or extreme fringe area.
The TELREX "CONICAL-V-BEAM" is the only antenna devised supplying FULL AUDIO and VIDEO BANDWIDTH and highest Signal to Noise Ratio!
The TELREX "CONICAL-V-BEAM" gives longer lasting customer satisfaction than any other antenna, irrespective of price.
Millions of installations all over the Americas' attest to the Telrex claim that NO OTHER antenna can perform as well as a "Conical-V-Beam."
Get a genuine TELREX "CONICAL-V-BEAM"-
SEE AND HEAR THE DIFFERENCE.

5-Tube Superlhet Fits Pocket

full coverage of ΔM band.

Sprague S16A is used for Asupply. Plate and screen voltages are provided by a $22^{1 / 2}$-volt hearing-aid B-battery such as Eveready No. 412-E or its equivalent. Total filament current for the five tubes is 100 ma and total B-current is approximately 1.5 ma. With these current drains, the A-battery gives about 40 hours use and the B-battery lasts slightly longer. The total cost per hour of operation will average around 3 cents; a quite reasonable figure.

The set consists of one r.f. stage followed by a converter, two i.f. stages, a germanium diode second detector, and transformer-coupled a.f. amplifier. Fig. 1 shows the circuit. Iron-core tuning is used in both the r.f. and i.f. sections of the set for greatest compactness.

The input of the r.f. amplifier and the oscillator portion of the converter are tuned by a single slide-rule type dial which is calibrated from 550 to 1600 kc . The i.f. is 455 kc . A hearing-aid type potentiometer in the grid circuit of the a.f. amplifier is used for volume control and also includes the 0 - 0 -OFF switch. A.r.c. is applied to the r.f. stage and the two i.f. stages.

All electrical components are of the subminiature type. Capacitors are of the "micro-size" variety, using ceramic dielectric to obtain minimum size for a given capacitance. In addition, ceramic capacitors are more reliable than paper
types under extreme conditions of temperature and humidity. Resistors aje 1/8-watt units, 3 inch in diameter and后 inch long.

Signal pickup is obtained directiy from the r.f. input coil. Although there is some directive effect with this method of pickup, it is not nearly so sharp as with loop antennas. The input coil is tuned with an iron core mechanically connected to the tuning core of the oscillator coil. The plate load of the r.f. stage consists of an untuned choke coupled to the converter stage through an R -C network.

The only available subminiature converter tube, the type 2 G 21 , has a E drain of 1.5 ma at $221 / 2$ volts and an A drain of 50 ma at $1 \frac{1}{4}$ volts. These drains are much too heavy for satisfactory battery life. Consequently, instead of using a standard converter circuit, a modified form of autodyne circuit is aserd with a single pentode tube used as both oscillator and mixer. The oscillator section consists of a tuned plate circuit which is coupled to a bifilar winding in the filament leads. The r.f. signal is fed to the control grid and the i.f. component is obtained by placing the i.f. coupling coil in the screen rircuit.

Each i.f. coupling impedance is a single parallel-tuned circuit instead of the usual coupled-circuit type. The coil is placed in a powdered-iron cup which increases the inductance and shields the coil from other components. Moveable iron cores passing through the center of the cups tune these coils. For frequencies above the i.f. of 455 kc , the impedance of the parallel resonant i.f.

Fig. 1-Circuit of the receiver. It is a complete superheterodyne with a.v.c. and uses five subminiature pentode tubes.
coils is: capacitive and bypasses the screen for r.f'. signalls. The r.f. coil Le is also placed in a cup like that in which the i.f.'s are mounted.
The i.f. cans also hold the resistors and capacitors associated with them, thus tending to keep each stage in a shielded unit.
The output of the last i.f. stage is fed to a shant-comected germanium diode detector of very small size such as Raytheon type CK705. The shunt type circuit is necessary to isolate the d.c. plate voltage from the detector. The diode second detector feeds a single a.f. stage which is transformer-coupled to a magnetic type hearing-aid earphone. The transformer for coupling the \bar{j}-chm magnetic receiver to the output tube is wound on a core 3×1 x x a ${ }^{2}$ inches. The turns ratio is $5,000 / 100$ so that the 00 -ohm earphone appears as a plate load of approximately

$$
\left(\frac{5,000}{100}\right)^{2} \times 50=125,000 \mathrm{ohms}
$$

Permeability tuning

The inductance of a coil due to the presence of an iron core is given by the equation:

$$
\mathrm{L}_{1}=\mathrm{I}_{11}\binom{\mathrm{a}}{\mathrm{~A}} \quad\left(\mathrm{P}^{\mathrm{P}}-1\right)+1
$$

in which
$a=$ cross sectional area of iron core,
$A=$ cross sectional area of coil winding,
$\mathrm{P}=$ effective pormealility of iron core,
Lan=-inductance of coil without iron core,
L_{1} - inductance of coil with iron core.
The effective permeability of the core is a function of the ratio of length to diameter of the core and is best expressed in graphical form. Fig. 2 is a set of curves showing the relation between the effective permeability of cylindrical ion comes and the permeability of the cure material itself. These curves were prepared by W. J. Polydoroff, a pioncer worker in the field of permeability tuning. Each of these curves shows the effective permeability as a function of the permeability of the core material for various ratios of core length to diameter, L/I). If the coil and core are not the same length, an addi-
tional correction factor is necessary. The true effective permeability is then $P_{1}=P(L)^{2 *}$ in which L is the core length. and 1 is the coil length. This is the value of permeability to he used in the equation for $L_{\text {a }}$ if the coil and core lengths are unequal.

To cover the A.I band of 550 ke to 1600 kc requires a tuning range of $16005.50=2.91$.
Since the resonant firequency of a tuned circuit varies inversely as the square root of the inductance, a change in inductance of $(2.91)^{=}=8.5$ is required to tune from .50 kc . to 1600 kc . Using a core (0.875 inch long and 0.200 inch in diameter gives

$$
\stackrel{\text { gives }}{L^{\prime} \mathrm{D}=-8.5} .2=4.37 .
$$

With this ratio of L/1) and a material with a permeability of 30, Fig. 2 shows that an effective permeability of 11 can be obtained, thus giving a tuning range of 3.32 . For an i.f. of 455 kc ., the oscillator must then tune from 1005 kc to 2281 kc . a range of 2.26 . This corresponds to an inductance change of apmroximately 5.11. To make the oscillator and r.f. stages track with the same core movement, several schemes can be used. The oscillator coil can be wound differently in shape or size, the iron core can be made a different size or shape, or an oscillator core of different permeability may be used. The latter method is used in this set. For the same L/D ratio of 4.37 and an inductance change of 5.11. Fig. 2 shows that a core with a permeability of about 6 is needed.
Since it is hard to get iron cores of specified permeability or to check the permeability of available cores, it may be easiest to wind two identical coils to cover the broadcast band, on the best core material available. Then turn or file down the oscillator core, checking frequently with a signal generator, till sou have the correct range as given above.

The r.f. tuning coil consists of 200 turns of No. 36 enamelled wire wound , n thin-walled bakelite tuhing $7 / 8$ inch long with an inside diameter of 0.200 inch. The oscillator coil is wound on a similar form. The plate winding has

Fig 2-Curves of effective permeability versus cure material permeability.

Photo of onf side of the bakelite chassis showing how the tubes are mounted.

A view of the other side of the chassis which shows the slug tuning mechanism.

210 turns of No. 38 enamelled wire wound next to the bakelite form. To obtain oftimum coupling between the plate and cathode windings, a cathode winding consisting of a biflar windiner of 200 turns of No. 36 enamelled wire is wound over the plate winding. The three i.f. coils and the coil in the plate cireuit of the r.f. stage are alike and consist of 300 turns of No. 32 enamelied wire wound on a ${ }^{\prime \prime} 1 ;$ inch diametor form ${ }^{1}$ inch long.

Output and fidelity

The power output of the audio staye is about 1 milliwatt, which is sufficient to drive the receiver to a sound level of 120 (d, above the normal threshold of hearing. The tiny hearing-aid earphone is so small that it may be nestled in the ear without an eartip or other means of support. For the hest sound quality, a hearingaid trpe molded earpiece should be used.

Some may object to the use of a receiver instead of a loudspeaker as an output device. A loudspeaker, in addition to being much larger in size, would also require more driving power and therefore, larger batteries, thus removing the set from the true pocket-size class.
Actually, a personal pocket radio should not use a loudspeaker, even if it were possible to do so. The advantage of not having one is that you can listen to programs of your own choosing without disturbing others. This is a real advantage in crowded places such as stadiums. etc. In addition, it is possible to get better audio fidelity than can be obtained with even a large loudspeaker.

Outstanding performance coupled with durability of construction make American Beauty electric soldering irons the choice of discriminating users in all fields

TEMPERATURE REGULATING STAND
Providing heat-regulation for all sizes of electric soldering irons, this stand is adjustable for all heats up to full working-temperature. Assures longer life of iron and tip.

For descriptive catalog pages write Dept. S-23

This is so because the receiver, working directly into the ear, radiates into a small closed cavity which provides a fairly efficient load for all frequencies. A loudspeaker radiates into a much larger space and is not efficiently loaded, especially at low frequencies.

The sensitivity and selectivity are good, and reception is reliable in all but the most unfavorable surroundngs.

Construction

Mechanically, the set is constructed of units which are mounted on a bakelite chassis. The two tuning coils are mounted side by side and fastened to the chassis with an adjustable brarket so that the coils can be accurately aligned with the tuning cores. The cores are mounted on a rack which is geared to the tuning knob. Each of the i.f. interstage coupling units is mounted in a metal box which fits into cutouts in the

Coil Winding Data for Receiver				
Coil	Turns	Wire Size (AWG)	Length (inches)	Diameter (inches)
L.I	200	36	7/8	0.225
L2	300	32	$1 / 4$	3/16
1.3	$200 *$	36	7/8	0.300
L. 4	210	38	7/8	0.225
- 100 turns in each half Use enomelled wire for all coils				

bakelite chassis. Battery contacts, transformer, volume control, and socket for the plug-in receiver cord are all fastened to the bakelite chassis which can be removed as a single unit from the plastic covering case.

The tube sockets are also set into the bakelite chassis and are held in place with cement. The tubes are inserted into the sockets and are bent over so they lie flat against the chassis. This must be done with care so that the glass around the tube leads does not crack.

The photographs indicate the layout of the little receiver. The batteries take up about a third of the space on the chassis, and the rest of the parts are laid out to avoid oscillation. All the wiring is point to point and is kept as simple as possible. This layout has proved excellent and should be followed.

The plastic case which houses the complete unit, including both of the batteries, is $41 / 2$ inches long, $25 / 8$ inches wide and 1 inch thick. The complete unit with batteries weighs 9 ounces. The controls, dial, and plug-in connection for the receiver cord are located at one end of the case for convenient operation while being carried in the pocket. The plastic case is in two sections, the lower section being removable to allow replacement of batteries.

Materials for receiver

Resistors: 3-2,200. 1-47,000, 2-220,000, ohms; 4-1. Resistors: $1-4.7$ megohms, $1 / 3$ watt: $1-5$ megohms, hearingaid type volume control.
Copacitors: 4-50, 2-75, 3-250 $\mu \mathrm{\mu f}$. 3-.005, 6-. 02 Mf. ceramic.
Miseellaneous: 5-CK522AX tubes; 1-CK705 germanium diode; 1-hearing-aid type output transformer; 1-s.p.s.t. switch on volume control: 1-hearing-aid earphone; $1-11 / 4$-volt mercury cell; -221/2-volt B-battery; -socket for earphone cord bakelite chassis, hookup wire, assorted hardware.
Note: use smallest sizes obtainable for all parts. Note: use smallest sizes obtain

GGREYLOCK TUBES: - JULY-AUGUST SPECIALS •

 RTMA 90 Doy Guorontee. 5% off on lots of 100 or more, assorted. For other type tubes and ports, see catalog.| Type | Each | Type | Each |
| :---: | :---: | :---: | :---: |
| 114 | \$. 59 | 6SATGT | . \$. 79 |
| 155 | . 49 | 6SDIGT | . 19 |
| 1 T 4 | . 59 | 6SK1GT | . 79 |
| 144 | . 59 | 6SN1GT | . 89 |
| $1 \times 2 \mathrm{~A}$ | . 99 | 6SC7GT | . 59 |
| 3 A4 | . 49 | 6U4GT | . 89 |
| 3 Q 4 | . 69 | 6V6GT | . 19 |
| $3 \mathrm{S4}$ | . 69 | 6W4GT | . 69 |
| 3V4 | . 69 | 6X4GT | . 59 |
| 6AG5 | . 99 | 6X5GT | . 19 |
| GAK5 | 1.09 | 12AV6 | . 59 |
| 6AL5 | . 69 | 12AU7 | . 99 |
| 6AQ5 | . 69 | 12AV7 | 1.49 |
| 6AR5 | . 69 | 12AX7 | . 99 |
| 6AS5 | . 79 | 12BA6 | . 19 |
| 6AU6 | . 69 | 12SATGT | . 79 |
| GAV6 | . 59 | 12SK7GT | . 19 |
| 6BA6 | . 69 | 12S8GT | 1.09 |
| 6BA7 | . 69 | 19BG6G | 1.49 |
| 6BG6G | 1.29 | 25L6GT | . 79 |
| 6BQ6QT | . 99 | 2575 | . 59 |
| 6CB6 | . 79 | 3525GT | . 59 |
| 6CD6G | 1.79 | 50B5 | . 79 |
| 6J5GT | . 49 | 50C5 | . 79 |
| 6S4 | . 69 | 50L6GT | . 79 |
| | | 11123 | . 59 |

FREE

Greylock Catalog today. Dept. C-7

GREYLOCK ELECTRONICS SUPPLY CO. 115 Liberty Street - New York b, N. Y.

OPPORTUNITY AD-LETS

Advertisements inntich for

 included bt the abote rale 'aols should acemonare all classified adertsememts mines placed by an acrectitel advertisibe agebry. No adsertispment for less that woth words accented 'Tes bercent dispont six issues. twenty advertisplis.
July
Radio-EEtccronics, 25 W. Brnadway, New York 7. N.Y.

 Norwalk. (: $: 3$
 workmambip. fothere winhe Amprite speaker Service,

 alog boc (ratunded
Jarkson Heights.

 cte. Deserihe, price in tiryt letter. Litteli, Farhills Box 20. Dayton !3. Ohio.
RADIO PABTS-Xew and Lsed-20 Iound Assoriment 2.50 plus shiming. MNA Radio, 9903 Jorain, Silver spring, Marskand.
RADO-TELEXISIOX - ELECTHONICS—TITORING at per lesson Mu, Terh., 3907 North $25 t h$ street, st, houls 7 , Miscouri.
FIVE EISEAENT TV YAGI BEAMN. Aluninum Tubing cte. Write for priws. Willard hadeliff. Fostoria, Obio. AMATEIRS-RADIO AND ELECTRICAL RESEARCH Engincering. Hy Twillmann. H.H. \# 1 , Cbestertidd, Mo.

U.H.F. IMPEDANCE BRIDGE

This instrument is a flexible and accurate impedance bridge for measure ments at frequencies from 70 to 1,000 $m \mathrm{~m}$, an important range for TV and other services. Conductance and susceptance are directly indicated over a range 1 to 400 millimhos. This is equivalent to 1,000 to $2 . \bar{z}$ ohms. Unlike conventional l.f. bridges, the calibration readings are independent of frequency, once a single adjustment is set. The instrument is manufactured by General Radio Co. and is known as type 1602-A admittance meter:

The bridge is a junction of five coax arms (Fig. 1). A u.h.f. generator is comnected to the rear fitting. At the

Fig. 1
front is an outlet for a detector. This may be a converter and u.h.f. receiver combination. The other three arms are terminated in a standard conductance, a standard susceptance, and the unknown admittance. The conductance is a \quad on-ohm resistor. The susceptance is an adjustable stub which is set for one-eighth wavelength for each measurement. Therefore the standard conductance and susceptance are known at every frequency.
The detector measures the sum of three induced voltages picked up by the three variable loops (Fig. 1). Each loop has a voltage which is proportional to its mutual inductance and to the current in the line. The right-hand loop picks up a voltage equal to $\mathrm{M}_{\mathrm{s}} \mathrm{I}_{\mathrm{x}}$ which is proportional to $M_{v}\left(G_{x}+j B_{x}\right)$. M_{x} is set by a pointer which slides along the "multiplying factor" scale. Then it remains only to determine the unknown G_{v} and B

When the detector indicates balance, the M_{x} loop voltage is equal and opposite to the sum of the other two lool voltages. Efuating resistive and reactive voltages, we find

$$
\begin{aligned}
& \mathrm{M}_{\mathbf{v}} \mathrm{G}_{\mathrm{v}}+\mathrm{M}_{\mathrm{n}}=\mathrm{O} \\
& \mathrm{M}_{\mathbf{v}} \mathrm{B}_{\mathrm{v}}+\mathrm{M}_{\mathrm{v}} \mathrm{~B}_{4}=\mathbf{O}
\end{aligned}
$$

As noted previously, G_{s} and B are fixed. The mutual inductances $M_{\text {a }}$ and M_{1} are controlled by pointers sliding along the conductance and susceptance scales. Therefore the unknowns may be calculated or determined directly from the calibrated scales.

Besides measuring directly in terms of susceptance and conductance, the bridge can be used to match terminations. to lines, measure reflection coefficient, etc.

YOUR BEST BUY IN POWERFUL P.A.

Here - the matstanding 30 Watt Sound Sys tem Lux of the country-KNIGHT-tops for porter didality. value. Just check these fea ture: (1 , ers 11, to 25.000 square feet out
 wat $=10$ and anput at 3 db down, 2 db from 40) 10 - 4 (10 ($)$ aps on phono and microphone inpul- whe for phono and microphone 3 fopat- twa for high-impedance mikes, one for the:hif tath with individual volume con trol icra "snirol atcenuates treble 15 db 10.1164, a for (wmpleresystem includes: watt amblutr and tubes, Electro-Voice uni direthonal" "ardax" microphone with adjus able fites sfand and 20' cable: two 14.7 (Alnj, V Nusnet General Electric 12 fused P P : porakers, each with 30^{\prime} cable porlable tarfing case, $16^{3} \times 1^{23} \times 25^{\prime \prime}$. Fon 110)-1 wil 60 (yele A.C. Shpg. wt., 75 Jbe 93-372. CompleteSystem (less phono- 51875
top 18 . sic.t chole i, \$4.92 monthly for 12 months 93-340 3-Spetd Phono Top with dual ervsid. carlrifife, dos above system. Only. . . $\$ 16.95$

Headquanters for P.A. and Hi-Fidelity

ALLiED corries the world's largest stocks of
P.A. omplifiers and systems- 8 to BO watts

Look to ALLIED, 100 , for High-Fidelity ampli-
fiers uners, speakers, and all other Custom
Sound components and accessories

Write today for the only comple is Huying ciade to everything in Sound, Kadio and lelevision, Make your selections from the woney-saving prices You time and effort and get the hethe and effort and gel the her: ALLIEIS Catalog. Send for vour FREE copy now.

ALIED RADIO

ALLIED RADIO CORP., Dept. 2-GG-1 833 W. Jechson Blvd., Chicago 7, Illinois \square and TliEE 212-Page ALLIED Catalog - Shay itse fulfowing :

trulged. \square Full Pay.

\square Part Pay. (bal. C.O.D
4

UNIVERSAL BRACKETS
Jensen Mfg. Co., 6501 52. Laramie. Chicago, li., announces a ot of brockens for their Viking line of speaker
models from $31 / 2$ inches to 6 inches in The unit package is the Viking CTM Universal Bracket Set which is used in mounting speakers to the chassis in ides transformer mounting facilities. aides transformer mount clamp strip with channels holds the speaker in position at any sis. The transformer mounting bracket

is a separate piece which can be atspace problems. Included is an illus-

TRANSCRIPTION ARM General Electric, Syracuse, N. Y, an-
nounces a professional tone arm, the nounces a professional tone arm, the
FA -21-A, designed to mount the G-E variable-rcluctance cartridge, R PX. 050. Minimum mass and friction is ob-
taine by using magnesium alloys and cone type bearings. It is designed for on machines whose dimension from the

Center of the turntable to the edge of 15 inches or less. The stylus is located by an arrow on positioned for playback of transcrip.

tons. Adjustable stylus pressure is provided by a precision spring loading
system calibrated in ounces and proms.

SENSITIVE METER

Hickok Electrical Instrument Co., 10531 Dupont Ave. Cleveland Ohio, has de. veloped a high-sensitivity battery volt-ohm-milliammeter with o 5 -inch meter and the following ranges: 20,000 ohms/ volt d.c., 5.000 ohms/volt oc. Vols a.c. and dec.: $2.5,10,50,10,50,250$, 1,000. Milliamperes, d.c.: 2.5, 10, 50,

 miniature is built into lie control by miniature ts bunt intiothe
on rah bowling hare.

The new "Tel-E-Foul," photoelectric Foul Indicator
produced by The Brunswick-Bake-Collender Company, famous manufacturer of bowling equipment, includes $75 \mathrm{M} \cdot$ Seletron miniatures in its electronic circuits Stictins: Selenium Rectifiers are the choice of an increasing number of manufacturers in diversified fields because they are so thoroughly dependable under all types of gruelney conditions. Srumuon is asulable in the electronic circuits, all the way up to licavy duty power suctronic circuits, all the way up to in cavy duty power Whenever you meet up with a power conversion problem, Whenever you meet up with a power conversion problem; assistance in recommending the right rectifier 8 - Reletront

RADIO RECEPTOR COMPANY, INC. (20

250, 1,000. Microampere dec.: 0 to 50 . Amperes, dec: 0 to 10 . Decibels: - 30 to +55 in five ranges. Ohms: 0 to
$1,000,5$ ohm center scale. 0 to 10000 1,000, 50 ohm center scale. 0 to 10000 50.0 hm center scale, to
ohm center scale, 0 to 100 meg., 500,000 ohm center scale,
ohm center scale.
The instrument weighs $23 / 4$ pounds and measures $53 / 4 \times 83 / 4 \times 21 / 2$ inches. Test

PLATE TRANSFORMERS

Standard Transformer Corp., 3580 N .
Elston, Chicago, Ill., is marketing Elton, Chicago, til., is marketing the Stancor PT and PC series. These have insulated leads to provide protected routing to circuit; no exposed terminals; no difficult cutouts needed.
The PT mounting provides o direct

protected path to the anodes of rectifie tubes with heavily insulated high voltage leads coming out of the top of the transformer. The primary is brought out the bottom for concealed subchossis wiring
The PC mounting is for units requiring single-ended rectifiers where safety is brought out the bottom of the trans former for subchassis wiring.
SIGNAL GENERATOR
Radio City Products Co., Inc., 152 W 25th St. New York City, is marketing a new wide-range model 706 A signal generator which provides continuous coverage of 50 kc to 220 mc . There are eight ranges, including six on fund-

Accuracy is within 1%. Adjustment and recalibration is readily available by air trimmers.
Thorough shielding and stability of calibration is claimed. Modulation is at 400 cycles, with provision for external modulation and variable moducation percentage control.
Other features are high and low ref. signal output, ladder type step attenuator and $6 / 2$-inch dial with vernier tuning.

DX 630 CHASSIS

Video Products Co. Red Bonk, N. J., announces a modified version of its
630 TV chassis which can be used for

The Super-Video-630-DX contains cirit features which bring its sensitivity All specifications given are obtained from manufacturers' data.

TV BOOSTER
 2 s.arm hootmi for noor-reception

PHONO EQUALIZER

RESISTANCE CHECKER

Weston Electrical Instrument Corp.,
 products, and the oher with linear graduatians for manutacturess and wration tables for other matericls in problem.
The instrument can ke uied with any riaterial capable of accommodatis
clectrode prebes. It is portable, with ch over-all ronge of from 2,000 ohms

FREQUENCY MONITOR Rodio Corp. of America, Engineering
Products Dept., Camden, N. J.. anProducts Dept., Camden, N. J.. an-
nounces an AM frequency monitor, RCA Tyoe BW. IlA, for wse in broad-
cost stotions. cost stotions.
The monitor will directly indicate in direction of the transmitter frequency

deviation from its assigned channel in the rarige of $500-2,000 \mathrm{kc}$. It reveols deviation range (readable ta 1 cycle)
of plus or minus 30 cucles with an million. Stability is better than I part per million. A warning-lamp system

ION-TRAP
 no manua
tube neck
one hand.

ELECTRIC KNIFE

Ungar Electric Tools Inc., 615 Ducor. mun St., Los Angeles, Cal., are rrcribeting the 540 combinction hite tip cesigned for cutting stripping, ana
ricrking plastics and insulation mete fials. This brass tip is interchengecble with the other tips in the lightueight threads onto the hecting unit of the

DX ANTENNAS
LoPointe-Plascomold Corp., Windsc Lacks, Conn., anncunces the develap-
 ment of two new methods of stacking
the VEE-D-X JC Yagi, Special phasing harnesses are now being manufactured
to convert the regular \mathcal{C} Yagi into a horizontal or vertical 4 -stached onThese arrays are designed for longdistance, single-channel reception, with
the vertical type recommended for flat the vertical type recommended for flat
terain and the horizontol iype for terain and the horizontol iype for

HI-PERM CERAMIC

D. M. Steward Mig. Co., Chattanoogo Tenn., announce production of Lavite ferrites, which combines high permeability with low electricol losses, per-
mitting the reduction of size and mitting the reduction of size and
weight in electrical products. This ceramic compound is recom-

SPIRAL ANTENNA Hi-Lo TV Antenna Co., 3540 N . Rovens a spiral antenna 20 inches high ond inches wide. It is claimed that thi

gnols received in oreas of high inter w TV chon be tuned to high cnd etal base is also manufactured

ALUMINUM TOWER

Alprodco, Inc., Kempton Ind. rounces production of a large-dicm mot aluminum tower which con accommodapter kit is available as anto codapter kit is available as an oc-
cessory. or an adaptor plate can be ourchosed separately The present model features an in. rease in strength of 22% over the prerous model. Steps are now included c CONICAL V BEAMS
Telrex Inc., Asbury Park. N. J. is ci
-ributing a low-cost Vanguard series
-ributing a low-cost Vanguard series o ssential features of the staridord te -x rinodels. This series is availat's
four models. including single\rightarrow

EATHODE-RAY TUBE
Allen B. Du Mont Laboratories, Inc Instrument Division, 1000 Main Ave Clifton. N. J. has a new type EyD rothode-ray tube, with a deflec:ion
factor of 12 . Volts per inch deflectio or each kv applied to anode No. 2. It employs an intensifier for increased brightness and smaller spot size, and useful in wide-band equipment or dhedates acceleraling potentials The plates of the type 5 YP . ore
 formance over whree distortion-free per ble vertical scan of the fube. deflection platestance to the vertical -end-

Patents

HERE'S HELP-

Now-in 1800 pages

All data, basic knowledge, methods and theory of Radio, Television, Electronics, digested into 32 Sections in complete, quick to find, easy to read Handbook form.
Plan every operation in Radio.TV and Electronics with this library set consisting of The Radio Elecwith this library set consisting of The Radio Elec-
troniss Handbook and the Video Handbook. These troniss Handbook and the Video Hamdoook. These
Handbooks will be your litelong tools-you will use Handbooks will be your litelong tools-you will use
them every day on the board, at the bench, in the held. Use them tor construction, production, installation, operation-use them tor adjusting, troubleshooting, incasuring and testing. They will be your invaluable aid in research, design, development, manufacturing or maintenance. With data and servring procedures complete, they will make your work aster. better, easier.
They give complete coverage of everything in Radio. IV and Electronics-and you will find them easy to ise-everything is presented in plain language-al terms explained; schematics, working diagrams and pictures are clearly illustrated for fast and easy understanding.
The Radio Electronics Handbook and the Video Handbook are works of complete authority prepared by the well-known engineers Scheraga \& Roche, under the direction of William F. Boyce, famous tor the preparation of hundreds of handbooks and man uals tor the U. S. Signal Corps, Navy Communications, Air Force Electronics Section, Western :lectric Co.g General Electric Co, Bell Laboratories R. C. A., Sylvana, DuMont Laboratories, Nationa Radio Co. and many others.
These Handbooks are endorsed by leading schools for instruction and reterence. The armed libraries make them available to field. Engineers, Draftsmen, choooratory and Production men in every industry have purchased over 50,000 of these books for use in their work.
500 Radio jobbers keep them constantly in stock for the convenience of their service and industrial customers. These are the most commonly used books in Radio \& TV.
Contents are too long and complete to describe hereso, see them at your Radio iobber, your bookstore, or send tor them on free examination. See for yourself what they will do for you.

SEND NO MONEY

10 DAY FREE EXAMINATION
SPECIAL OFFER: Sove one dollar - get SPECIAL OFFER: above in
$\$ 10.90$.

BOYCE ROCHE BOOK CO.
Caldwell 47, New Jersey
Send () Library Set (2 books) @ \$10.90 1 () Radio Electronics Handbook @
() Video Handbook @ $\$ 5.95$
In ten days I will send price plus postage, or
I will return books postpaid
(Offer good in U.S.A. and to men in Armed
Services overseas only.)
Name
Address
Address Employed by
Save postage-we pay postage and packing if
Save postage-we pay postage and packing is
you send money NOW. Money back on same
return privilege.

VARIABLE INDUCTANCE PICKUP

Patent No. 2,531,689
Henry L. Kalmus, Chicago, Ill. (Assigned to Zenith Radio Corp.)

This phono pickup can be made light and compact. The accompanying illustration shows the principle of operation. A small coil L is fixed to the stylus. As the stylus vibrates it drives
 the col alternately toward the copger dise and
the mowdered iron. The inductance of I is dethe mowlered iron. The inductance of 1 is decroased when it approaches the copper. but motion toward the iron increases the inductance. These changes provide frequency modulation of the ultraudion oscillator.

The FM wase is transmitted by the antenna and may be intercepted with a nearby receiver Any type of discriminator converts the wave to audio. The detector may be followed with a.f amplifier stages to increase the power.

IMPROVED TRANSISTOR

Potent No. 2,502,479
Gerald L. Pearson, Millington and William Shockley, Madison, N. J. (assigned to Bell Telephone Labs, Inc.)

A transistor is made of a semiconductor such as yermanium to which an "impurity" is added to control the flow of electric charges. When arsenic is added to germanium, it becomes an N type semiconductor. This means that conduction takes place when the germanium is made negative with respect to a metal contacting it. When alu minum is added, the germanium becomes a P-type substance; that is, it conducts when it is positive with respect to a metal surface or point contac on it.

This invention relates to improvements over early transistors. The transistor made in accordance with this invention is shown in the figure. It is composed of a long, thin, N-type germanium crystal with enlarged ends. At each end is a metal surface, which may be a film of solder. A tungsten or phosphor bronze point contacts the thin portion.
Positive charges or "holes' flow from the emitter E into the N-type semiconductor. These move toward the negative collector C and away from the positive base 13 . The long, thin portion of the transistor increases the output impedance, a desirable feature. It also permits more intense internal fields to accelerate the holes, thus reducing heating and transit time effects. A large meta surface contact at C (instead of a point contact) decreases noise
If desired, a P-type semiconductor stub may be used as emitter instead of the catwhisker. This also reduces noise

3-DIMENSIONAL OSCILLOSCOPE VIEWING

Patent No. 2,541,04
James L. Whittaker, Princeton, N. J
(Assigned to Radio Corp. of America)
This oscilloscope measures 3 variables simultaneously. Horizontal and vertical positioning of the spot indicates 2 of the variables. The third is measured by the apparent distance of the spot from the observer. A stereoscopic method provides depth of vision for this purpose.

This invention may be used to find the azimuth, elevation, and range of a target. In the diagram shown, circuits A and B have outputs which vary
with azimuth and clevation, respectively. A de flects the spot vertically while B controls it horizontally.
A third circuit C has an output which depends upon the range of the target. This voltage controls a switching circuit which deflects the heam to the right and the left alternately. The amount of deflection increases with range. Therefore for each target there is a pattern of 2 spots which appear alternately and whose separation increases with longer range.
Optical or mechanical arrangements may he used to provide steresscopic viewing. While the spot is deflected to the right. only the right eye is permitted to see it. Then when the spot is in its other position, only the left eye is permitted to view it. When the switching is periodic and rapid there is a sensation of seeing only a single spot which is located some distance from the ohserver. As the

range increases, the deflection is greater and the spot seems further from the viewer.

To prevent confusion, the deflection trace is blanked out by a suitable voltage applied at the scope grid.

SELF-FOCUSING AMPLIFIER

Patent No. 2,538,488
Walter K. Volkers, Schnectady, N. Y.
(Assigned to Volkers \& Schaffer, Inc.)
A direct-coupled amplifier passes low frequencies down to and including d.c. It therefore transmits undesirable drift and fluctuations due to random emission, supply voltage variations, etc. This interference is called defocusing, as it "blurs" the original signal. Defocusing may result in overloading, noise, and distortion. Several selffocusing methods are described here.

The figure shows a crystal phono pickup and a 2 -stage d.c. amplifier. The control- and screengrids of V1 are returned to taps P1, P2 on the cathode resistor R1. By choosing these taps correctly, drift is cancelled out by the negative feedback. The a.c. is bypassed through C and cannot be fed back.

The divider R2, R3 is another self-focusing arrangement. If the B-voltage varies due to aging of parts or changes in line input, the cathode voltage is affected. For example, if the supply in-

creases, so does the amplifier gain. However, the increased bias of V 1 reduces its gain so there is no defocusing.

The pickup is shown connected to the cathode of V_{1} instead of ground. This is done to reduce hum. If it were connected between grid and ground as usual, any ripple across R3 would be impressed across the tube. With the connections that are shown, only a fraction of the ripple is present.

COINCIDENT CIRCUIT

Potent No. 2,538,500
Leon Bess, Boston, Mass. (Assigned to United States of America as represented by the Secretary of the Navy)
Output is obtained from this circuit only when two simultaneous signals are fed to it. One signal (T) must he negative. The other (C) may be cither negative or positive. C must appear simultaneously with T^{\prime} to produce output.

Ordinarily luth triodes are blocked by the large cathode recisar. A negative r unblocks them. Due to symmetry equal currents flow through Li and La. These ale similar coils but oppositely wound, therefore mo mitnut is induced in Lis. When a signal is applied at C. greater or less current floss through Lit. This slestroys the coil balance. permitting output to flow in L. 2 . The phase of this current depends upon whether C is negative or positive
In a poetical esse t may be timing or syne pulses. The cirnil does not operate unless (${ }^{\text {chap- }}$ pons ta coincide with a timing pulse. It cannot operate as a result of mise or interference between timing multics. If the control pulses C are positive. they max he smaller than T.

D.C. TO A.C. CONVERTER

Potent No. 2,540,825
sames M. Lofferty, Schenectady, N. Y. (assigned to General Electric Co.) A direct-cmupled stage can amplify die. but its gain and stability are not as high as those of a conventional R-C coupled amplifier. It is often better to convert the she. signal to ac. before amplifying. 'This invention discloses a combination of electrometer the and square-wave supply. These amplify the dec.. then convent it to a de Then the ai. may be amplified as desired.

The tube may be a (i-F type 5655 "split" electorometer. It has two similar sections, V1, V2, with common filament and common space-charge grid (i). The tube is desired for low leakage between elements and to r round. It operates with very low voltages to minimize ionization and noise. Gil neutralizes the space charge around the filament, thus increasing the space current for a given low plate voltage.

The electrometer is in : bridge circuit. R2, R3 are arms of this bridge. The third is made up of V1 in series with R1. Va is the fourth arm. Tube bias, space charge, and anole voltage are adjustable by means of P$], \mathrm{P}^{\prime 2}, \mathrm{P} \cdot 3, \mathrm{P}^{\prime} 4$. These are set to balance the bridge with Si open and S2 closed. Therefore, with zero dec. signal, no potential ifference appears between terminals X, Y
Now the square-wave generator SQ is substitoted for 132 by closing SW1 and opening SW2. It must have the same amplitude as the battery. With square-wave input, the bridge still remains balanced until a dec. signal is fed to V1. This changes the resistance of V1 so a voltage appears between X and Y. This voltage is a square wave like $S Q$. The ac. is induced into the secondary of the transformer which is tuned for maximum output. Stages of ac. amplification can follow.
-end-

Chef ers

Announces

 - new television VIDEOMETER

The HICKOK Model 650 Videometer is the first instrument of its kind to accurately and rapidly solve your servicing problems with the necessary tests to visually identify trouble in any section of a TV receiver.

An all-purpose video generator. Provides an electronically accurate bar or dot pattern on the screen of any TV receiver -independent of station operation. Can be used as a TV transmitter to simultaneously transfer a program to any numb. ben of TV receivers - on any desired channel.

THE HICKOK ELECTRICAL INSTRUMENT CO.
10531 DUPONT AVENUE
CLEVELAND 8, OHIO
CLEVELAND 8, OHIO

WHEN WRITING ADVERTISERS PLEASE MENTION RADIO-ELECTRONICS

AMPLIFIRR CORP. of AMIRRICA

NEW CONDENSER TESTER

(f) Finds Intermittent

 Condensers Instantly

Satisfaction guaranteed.
See Your Dist. or Order Direct
PRES-PROBE CO
4034 N. Sixth St., Milwaukee 12, Wise.

Radio-Electronic Circuits

there's only OWE
 APPROVID POWER SUPPIY

New Low Cost "BJ" JUHIOR Save Time, Money Servicing DC Equipment
Demonstrate ond test cor and marine ro dios . . . relays, phone circuits, instruments, other low voltage devices. End costlv storage battery failures with Elertro's dependable filtered Powe- Supply. Exclusive conduction cooling doubles rectifier power raring, os sures lowest cost per ampere output over other types and dissipotes over 3 times the heat. Quality components withstand high overloods. 6 Volts, I to 12.5 amps . Continuous output.

Model '"B"' 6 Volt DC Power Suppiy 1 to 20 Amps. for Heavy Duty Applications

OVER 2 MILLION Battery Radios Offer Huge PROFIT Market!

Batterv radios in city and rural areos offer you big profit opportunities. Converts any 1.4 volt. 4 to 6 tube battery radio to an efficient $A C$ redio. firjs into a 115 volt $59 / 60$ cycle outlet. Givas years of tepend. oble hum.free rerention at lowest cost. Guaranteed for three years.

SENDCOMPON

Electro Products Labs

4507-JS Ravenswood Ave., Chicago 40, 111. Send literature, name of nearest source.

Name...

Address.

CANADA: ATLAS RADIO CORP. LTD., TORONTO

HIGH-VOLTAGE CUT-OUT

dutotransformers are often used to compensate for variations in line voltase. Some equipment such as a.c.-d.c. receivers are easily damaged when the line voltage rises above normal. Other types fail or work poorly when the voltage is too low.
Described in Radio Constructor (Lon(lon, England), is a novel device which breaks the circuit to the equipment when the voltage rises above a predetermined level. The circuit is shown at a in the illustration. In the original circuit-designed for use on 220 -volt lines-R1, R2, and R3 are 5,000, 10,000, and 10,000 ohms respectively. The bleeder current is 10 ma or more. The values on the diagram are for 117 -volt lines.

A portion of the voltage across the bleeder is rectified and applied to a neon lamp through a limiting resistor $R 4$ and the coil of a relay. When the voltage reaches a given level, the lamp ignites and draws enough current to cause the relay to pull in, thus breaking the supply line to the external appliance.

Resistor R4 is the normal currentlimiting resistor recommended for use

with neon lamps. Use the value specified for the lamp you select. The neon lamp can be replaced by $0 \mathrm{~B} ; 3$.or $0 \mathrm{C} ;$ voltage-regulator tubes. In this case, R4 should limit the current to 30 ma for the 0B3 or 40 ma for the 0C3. The relay must pull in at a current within the range of the neon or voltage-regulator tube. The relay contacts must be heavy enough to handle the current drawn by the external circuit.

To calibrate the unit, use the setup shown at b. If the equipment is to operate at 110 volts, set the tap on the transformer and the variable resistor in series with the line so approximately 115 volts is applied to the load. Slowly: advance R 2 until the neon lamp or voltage-regulator tuhe fires and opens the relay contacts. (heck the setting by turning off the unit to extinguish the lamp, then vary the input voltage between 110 and 120 volts to make sure that the relay always opens as soon as the voltage exceeds 110 .

MORE BASS BOOST

Variable bass-boost circuits like that shown in the diagram are widely used in amplifiers and receivers. They usually work well at high volume but are unsatisfactory when the volume is turned down. Additional bass boost can be provided by adding R1 and C1 in an
inverse feedback network. Connect the free end of C1 to point A, one side of the 500 ohm winc.ing on the outhut thanstormer. If the amplifier oscillates, reverse the connections to this winding. If the transformer has no 500 -ohm winding, connect the feedback loop to either of the output plates at B or C . Using either of these connections is

likely to increase the hum level, particularly if the power supply is not highly filtered. Therefore, it may be necessary to install additional filter capacitors and decoupling resistors in the circuit. R1 may be made variable and a switch may be installed to open the loop when maximum output from the amplifier is desired.-M. Ort

REMOTE ANTENNA DIRECTOR

A remote direction indicator for rotatable shortwave, FM, and TV antennas was described in Ohmite Ham. Ncus. An Ohmite type RB-2 directionindicating potentiometer is installed at the antenna with its shaft connected to the rotating portion of the antenna mast through a 1 -to-1 drive mechanism. It is connected to the control box at the receiving position through ? wire cable. The control switch may be a double-pole unit which has one of its poles connected to control the motor of the rotator.

The meter scale should be calibrated in compass points as shown in the

diagram. South is at the ends of the scale and north is in the center. West and east are one-quarter and threequarter scale, respectively.

PHONOGRAPH PREAMPLIFIER

Most meamplifier-equalizers for Gİ variable-reluctance pickups use the now familiar circuit with the triode sections of a 6 SC .7 connected in cascade. A GAUG pentode is used as a phono preamplifier in the G-E model 752 and 753 receivers. This circuit is shown in the diagram.

RADIO-ELECTRONICS for

AUTOMATIC ANTENNA MATCH
Tuned loops, open and shorted stubs, Q-bars, and delta-and T-mateh systems have been devised for matehing transmission lines to antennas to provide a low standing-wave ratio. With these systems, the frequency range is limited to narrow bands and the antenna cannot be operated efficiently on harmonics without making adjustments on the matching system.

This system is devised to match almost any balanced line to antennas having high or very low radiation resistances. It is suitable for feeding rhombics, V-beams, folded dipoles, allchannel TV antennas, stacked arrays, and many other types of antennas lequiring 2 -wire feed lines. An antenna cut for 80 meters will work equally well on 40,20 , and other harmonics. The only difference is in the radiation patterns.

Two methods of applying the automatic match are shown in Fig. 1. D1 is equal to the spacing between conductors of the transmission line, and $D 2$ is just enough spacing to prevent voltage breakdown. In receiving and low-power transmitting antennas, D2 may be the insulation of two wires taped together For transmitters of 500 or 1,000 watts, D2 may be approximately $3 / 8$ inch. We have used 72 -ohm coaxial cable for the

quarter-wave section. The inner conductors were connected to the antenna and the outer conductors connected to the transmission line. In this case, D2 is the spacing between the conductors of the coax, and D1 is adjusted so the outer conductors present the same impedance as the transmission line. In other tests, the matching section consists of No. 12 wires taped together with $3 / 1$-inch spacing between pairs to match 300-ohm ribbon. For other openwire lines, the matching sections should be made of wire having the same diameter and spacing as the transmission line.

This system has been used to feed antennas having up to six reflectors. The only necessary adjustment was trimming the radiator and matehing section. Rhombic and V-beam antenmas are matched by cutting two legs long enough to include an additional onequart "wavelength at the lowest usable frequeiney.

The standing wave ratio of an antenna cut for 200 me dropped from $3: 1$ at 150 mc to $1: 1$ at 200 , then rose slowly to only $1.6: 1$ at 250 mc . This shows clearly that antennas cut for the lowest frequency can be used at considerably higher frequencies.- A. L. Munzig

For Dependable Installations RELY ON PENN TV

ANTENNA MOUNTS UNIVERSAL PEAK ROOF MOUNT PRA-148
Adjustable to fit any peak roof. Complete with cadmium plated nuts and bolts. Designed for quick easy installations. Takes masts from $3 / 4^{\prime \prime}$ to

PENN

TELEVISION PRODUCTS CO. 3336-38-40 Frankford Ave., Phila. 34, Pa.

EASY MONEY!
jUST SELL US STUFF AND THINGS!
Look what we will PAY you for it:

G. L. ELECTRONICS

905 S.VERMONT AVE. - LOS ANGELES 6, CAL.

REK-O-KUT presents a New
Continuously Variable - Speed Turntable of BroadcastQuality

Plays at any speed from 25 to 100 R.P. M., without "wow!"

Speed can be varied while in operation to produce sound effects.
Now for the first time . . a continuously variable turntable of Broadcast Quality at o popular price Ideal for record collectors, musicians, singers, dise jockeys, broadcast stations, music schools, dance studios, skating rinks, gymnasiums, ets. Plays through amplifier, radio, TV set or phonograph. Operates on 50 or 60 cycles.
Model CVS-12 (illustrated)
Chassis, motor and turntable . . $\$ 84.95$ net. Model CVS-12P, mounted in portable case
with $16^{\prime \prime}$ dual stylus pickup . . \$124.95. net.
 3-Speed 12" Transcription Turntable Recommended by outstanding music critics. Induc.
pion-type motor designed for smooth, quiet, vibra. tion-type motor designed for smooth, quiet, vibra. tion-free operation. 3 speeds, 78, 45 and $331 / 3$ Model LP-743
$\$ 54.95$ net.

Write for Illustrated Catalog of REK.O.KUT Line
of Hi-Fidelity Recording Instruments, Phono-
graphs. Transcription Tables,
REK-O-KUT CO.
3s-1 1 A Queens Bivd, La.c., N. Y.

- Aerovox "Dandees", of course! Tubulars encased in aluminum containers. Especially suitable for tight spots. Single or multiple sections. Insulated stranded wire leads and safety sleeves. Common-negative wire lead. Vented for excessive gas pressure.
Normally supplied with etched foil for utmost compactness, but plain foil also available. High-
purity foil aluminum minimizes corrosion possibilities. Vented for excessive gas pressures. Insulating jacket. Mounting strap. Widest selection of voltages and capacitances. Single-, dual. triple., and quad-section units.

Ask your jobber for these Aerovox "Dandees." See list. ings for any voltage and capacitance combination.

PROTECTING SPEAKER CONES

Most service technicians have accidentally punctured a speaker cone at one time or another while working on a set or carting it to or from the shop. Although such accidents are rare, there is always a chance that it will happen on your next servicing job. A simple protective cover will prevent this and make it less likely to drop bits of solder. metal filings, and dirt between the voice coil and pole piece.

For speakers from 4 to 8 inches in diameter, cut a 10 -inch disc from ${ }^{1}{ }_{4}$ inch plywood or similar material. Draw two lines at right angles through the center. With these lines as centers, begin 1 inch from the rim and cut fous slots $23 / 4$ inches long as at a in the figure. They should be just wide enough to pass the square shank on the head of a small carriage bolt. When you finish the slots the disc will look like a lathe faceplate. Make four clamps from stra] iron (see b in the drawing) and dri] holes to pass the shafts of the bolts.

The dise is fastened to the front of the speaker by four small Z-shaped clampss slipped over the shafts of the bolts and held against the rim of the speaker with the wing nuts. The slots grip the shanks of the bolts and prevent them from turning while the nuts are being tightened. (see drawing at r.)
$F^{F}\left(r^{\prime}\right.$ speakers ranging between 8 and 15 inches in diameter, cut the dise at least 17 inches in diameter. The slots should he approximately $43 / 4$ inches long and should start about $3 / 4$ inch from the rim.-Francis Robbins

BUILT-IN ANTENNA FOR FM

To install a built-in antenna on FM receivers and tuners simply replace the standard line cord with a flexible, rubber-covered, three-wire cord. Connect two of the conductors to the power supply and line plug. One end of the third wire connects to the antenna terminal, and the other end is cut to approximately 6 feet and taped.

If a three-conductor cable is not available, take a 6 -foot length of insulated wire and tape it to the powey cord with cellophane tape.

The third wire has some direct pickup plus additional pickup through capacitive coupling to the line. The system is used by some commercial receivers. This type of antenna can be used with AM sets as well, if the signals override the static on the line.Arthur Trauffer

Technical Bulletins

EACH $\$ 1.00$ Postpaid Foreign $\$ 1.25$

Simplitied technical information on many subjects of everyday usetuiness, written in simple, easy-io-understand language. [hey contan no complicated mathema tics, chemical and electical theories, and are not bused on the assumption that the - eader has had a technical training.
1102) Cleaning Products for Many Pur-poses-wer 3 , enfective chemical cleaners that (1) can make and sell.
(110) Electroplating Non-Metallic Ob-jects-includes word, leather, plaster, glass, huwers, msects, fabrios. Comple directions.
(114) Thermostats Easily Made-Designing and mathig automatuc conirol units of many lypes for mantanmy uniform temperatures,
antomatic furnace regulation, safety controls to antomatic furnace regula
prevent overheating, etc.
(115) Glue Molds for Casting Novelties -Making flexible glue molds for casting small objects, using plastics. magnesite.
(119) Electroplating with Alloys-Bronze, brass and cadmium-silver. Improves finish and provides durable coating.
(123) Mirror Silvering-Make money resilvering old mirrors and making new ones. mirrors.
(124) Soldering All Metals_Includes alumi. num and die-cast alloys. Secrets of using the right flux and correct technique.
(125) Buffing \& Polishing-All details on correct polishing. How to select the right abrasive for different kinds of metal. Gives wheel speeds, types and sizes of motors for best results.
(129) Coloring Metals Chemically-Tested formulas and directions to produce durable finishes in many colors on brass, copper, iron,
(130) Glass-Working Technique-How to cut. drill, grind and mount glass correctly; includes cutting of circles and internal openings.
(132) Working with Plostics-Covers all details of cutting, tooling, bending, cementing and polishing. Enumerates various kinds. Shows how to design articles. Includes using liquid plastics.
(139) Rubber Molds for Casting Novel-ties-Used for same purpose as glue molds but where greater elasticity is required.
(141) Recording Thermometer-How to make device to record room temperatures over 12-hour periods on a disk. Has alarm-clock

mechanism.

(146) Simplified Casting Methods-Making small castings of soft metals without use of sand molds. For novelties, toys, etc.
(147) Drills and How to Use Them-How to use drills in different metals, plastics and other materials. How to sharpen correctly. Includes charts giving speeds and rate of driling.
(149) Electroplating with Copper, Nickel, Chromium, Zinc, Lead and Cad-mium--Enables anyone to do this fascinating work on a small scale.
(156) Home-Maintenance Formulas \& Repairs-Includes a large number of simple, effective solutions for everyday household problems.

TECHNIFAX, 520 N. Michigon Ave:

Enclosed find \$......for which send the following Technieal Bulletin at $\$ 1.00$ each (Foreign $\$ 1.25$) as indicated by numbers:

B-SUPPLY USES OLD TUBES

The next time you start to hook up an experimental power supply and find that you don't have a suitable rectifier, look around and see if you can find a 25L6. $35 \mathrm{~L} 6-\mathrm{GT}, 50 \mathrm{~B} 5$, or similar out-

25L6, 35L6-GT,35A5, ETC.

put tube that is weak or not being used. The circuit shows how these tubes can be connected as half-wave rectifiers. The flament-dropping resistor should be selected to supply the correct voltage to the heater or heaters. Other tubes can be connected in series and inserted at A on the diagram.-M. G. Williams

BRUSH FOR SPEAKER CEMENT

Some makes of speaker cement do not have a brush or applicator built into the bottle cap. Consequently, the brush always gets hard and must be discarded. I prevent this by drilling the bottle cal) to pass the handle of a small metalhandled glue brush. The handle is then soldered solidly to the cap with an airtight joint. The tip of the brush will not harden because it is immersed in cement when not in use.—Mamucl E. Silva

TRANSMITTING-TUBE CHECK

You can tell when your transmitting tubes are going sour if you will make a note of the plate-current readings of new tubes for a given load and plate voltage with the transmitter operating normally. When a tube starts to lose emission, the plate current will begin to drop off from its former fixed value and its output will be less. Class B modulators are checked by watching for a decrease in the static plate current. A gassy tube will cause a higher-thannormal plate-current reading.-Norris C. McKamey

LONGER LIFE FOR METERS

The life and accuracy of the sensitive movement of a 20,000 -ohms-pervolt multimeter can be prolonged by keeping the function switch set to A.c. volts whenever the meter is being carried on outside jobs. Setting the meter to read a.c. voltage damps the meter movement by shunting it with the low resistance of the instrument rectifier. This damping action greatly reduces pivot wear caused by bouncing while in transit. This fact can be verified by setting the meter to DC volts and giving it a quick jerk. The meter will swing wildly upscale. Try an a.c. range and note how much the needle is damped.
The meter can also be protected against vibration and sudden jolts by setting the function switch to a high current range. This damps the movement by loading it with the current shunts. This method is not recommended. The meter will burn out if you forget to switch the meter before measuring volt-age.-Milton Kalashian, W1NXT

THIS RCP KIT! IT'S EASY! IT'S FUN! IT SAVES YOU MONEY!

MODEL 345K super vaculm tube voltmeter $=26^{55}$
nOTHING ELSE TO BUY!

MORE THAN 150,000 RCP IMSTRUMENTS IN

USE TODAY, .. PPIOVE THEIR SUPERIORITY : Now you can get in KIT form the best pro : fessional test equipment made by Radio City : Products Co. You get kits that are complete with all necessary parts and easy-ta-follow assembly instructions. There is nothing else to
buy! Yes, an RCP kit provides an enjoyable few hours in construction and instruction plus a finished test instrument at a tremendous
saving! - Features long same $91 /{ }^{*}$ meter in burn out proof

 olums (1000 megohms . 20 voltage rankes $0-1000$
 Diseriminator aligument senle with zero center
nermiting operatimn in hoth directions. Operates on $105-130$ rolts. 50-60 rweles-Estra heary panel,

lbs. Shipping weipht 11 lbs
Buy from your Jobber Insist on RCP
Write for Catalog RE-7

(PHOTOFACT INDEX AND TECHNICAL DIGEST)

* Each issue packed with authoritative articles on TV, Radio, latest servicing techniques
* Latest complete Index to РН ОТОFACT, world's finest service data
Don't miss a single issue! Be sure to get your PFindex-the valuable new publication you'll read from cover to cover-and use at your bench every uorking day.

PF INDEX brings you complete, fully illustrated discussions of latest developments in Radio and TV. Keeps you up-to-date on new circuit designs, latest testing methods, timesaving repair techniques, good shop practices-helps you operate a bet-practices-hefitable business.

Have all this practical, authoritative information plus the complete Index to photofact Folders-the quick reference guide to the world's finest service data. PFINDEX is worth dollars to you-and costs you nothing. Get your free copy today!
Ask Your Jobber for It!

HOWARD W.SAMS \& CO. INC.

```
Get the current PF Index from your
Parts Jobber, or write us direct on
your letterhead (or enclose business
card). Address: Howard W. Sams &
Co., Inc., 2201 E. 46th St., Indian-
apolis 5, Ind.
Send FREE copy of the current PF Index
```

\qquad
\qquad

```
City
```


THERMAL SHUNT

While studying the effect of heat on the value of resistors and other components used in electronic equipment, the Telecommunication Research Establishment, a branch of Britain's Ministry of Supply, found that small composition resistors can be ruined by heat when using standard soldering techniques. The heat from the soldering iron may cause the value of the resistor to increase or decrease by 20% or more. The body tomperature of the resistor should be restricted to $100^{\circ} \mathrm{C}$ and preferably $50^{\circ} \mathrm{C}$ if permament change in the initial ralue is to be aroided. In most cases, the temperature rise does not reach the critical value when the length of lead between the body and soldered joint is at least $1 / 2$ inch.

Leads $1 / 2$ inch long are prohibitive in most miniature apparatus, so a thermal shunt was developed to dissipate the unwanted heat and prevent it from reaching the body of the component. The shunt consists of a crocodile clip with copper bars $1 / 8$ inch thick, $1 / 4$ inch wide, and $11 / 2$ inches long sweated to its jaws. The shunt is clamped to the resistor lead so it is at least $1 / 16$ inch from the body of the resistor and from the soldering lug. It should be left in this position for at least 15 seconds after the iron is removed from the joint.

(a) SHUNT DIMENSIONS AND CONSTRUCTION.

(b) SOLDERING SET-UP USING THE SHUNT.

The construction of the shunt is shown at a and method of using it is shown at b in the drawings. ithe surface next to the resistor should be finished with a flat black paint. The opposite side should be polished so heat will be radiated away from the resistor.

This will be found to be a useful device to have around the shop or laboratory. With the trend today to smaller components, the need for direct applications of small amounts of heat is becoming more important. Not only resistors, but miniature capacitors require careful handling.

NOW IN BOOK FORM

 John T. Frye's outstanding series on the fundamentals of radio servicing!

OnI y $\$ 2.25$
1.0 Puges

130 Illustrations
First Gernsback Library Book with Durable hard-cloth cover
One of the finest books on fundamentals ever written for the practical service tech nician. BASIC RADIO COURSE starts with Ohm's law, then takes you through the circuits of a modern radio set and tells you how and why they work. It's actually a pleasure to read because the duthor believes learning should be fun. He talks the service technician's language and innt afraid to make you smile once in a while. But BASIC RADIO COURSE doesn't skimp on facts. It gives you all the technical information you'll find in a higher priced book. But, you'll enjoy read. ing it and bu'll save money.

PUBLISHED BY REQUEST

BASIC RADIO COURSE was published at the request of many radio men who read, enowed and learned from John Fryes series on the fundamentals of radio strivin: which concluded only recently in RADIO-ELECTRONICS. It can belp the experienced technician as well as the beginner. Order your copy today.

TWENTY-SIX CHAPTERS

The Electron Theory • Ohm's Law and the Resistor . What is Induction? - Capacitance - How Capacitors are Made - Reactance, Impedance and Phase - Resonant Circuits - TransformersHow They Work - The Diade Vacuum Tube - Triode and Tetrode Tubes a The Pentode Vacuum Tube - Vacuum Tube Characteristics © The Powe Supply - Power Supply types © Sound and Loud Speakers, The Power Output stage \dot{R}. The Volt age Amplifier - Demodulating the R. F. © Re ceiver Selectivity. The Converter Stage Some Scillator Circuits. Row to frap a Signal. Signals in space - Receiver Refinements
ments and Tools. Service Techniques.
Order your copy from your distribulor or
MAIL THIS COUPON TODAY
Radcraft Publications, Inc.. Dept. 71
25 West Broadway
25 Wew York 7, N. Y.
My remittance for $\$ 2.25$ is enclosed. Please send me a coDy of Boak No. 44, BASIC RADIO COURSE postpaid.

NAME
STREET
CITY \qquad ZONE__STATE

SENSITIVE 4-TUBE REGENERATIVE RECEIVER

? I would like to sce a ditagiram of a 4-tube short-wave regencratine receiner using any of the following tubes: 12SA采, 12SQr, 6Ko, 95Z5-GT, and 5oLe-GT. I'lease showe how my 4-prony coils (see inset) can be used in the circuit which you prepare. 1 want to use a pair of crystal phones, so include a means of silencing the speaker when the phones are phugged in.-E. S., Toronto, Ont.
feedback winding determine the ease with which the detector goes in and out of oscillation as the regeneration comtrol is varied. The direction in which the feedback winding is wound determines whether the set will oscillate or not. If the circuit does not wacillate with your coils, transpose the connections between the ends of the tickler and pins 1 and 4 on the coil form. Try different values of resistance for the

A. The circuit of a sensitive regenerative set is shown in the diagram. The tube heaters are connected in series across the a.c. line. The E-supply is taken from the secondary of a small isolation transformer. If this type of transformer is not available, you can use two 6.3-volt, 2-ampere filament transformers connected back-to-back.

The size of the detector grid-leak and the number of turns on the tickler or
oscillator grid-leak and use the value that provides the smoothest control over regeneration.

The performance of the set can be slightly improved by shunting the $100,000-\mathrm{hm}$ plate resistor with an audio choke of 300 henries or more. Use an audio transformer with primary and secondary connected in series (in the direction giving best results) for this choke, if you have one on hand.

STACKING TELEVISION ANTENNAS

? I have four $300-\mathrm{chm}$ Yagi antennas which are cut for chamel 13. Please show how I can stack these so that the array will match a 300 -
ohm transmission line.
How much gaine can I expect by stacking Pa.

JULY, 1951
A. With correct interbay spacing and a perfect match to the transmission line, a 4-bay stacked antenna will have a theoretical gain of approximately 6 db over that of one of the antenna sections used alone. This assumes that the signal strikes all the antennas equally with respect to phase and amplitude. Therefore, the maximum gain is possible only when the signal is free from multipath reflections. Location in this case is important.

Stack the antennas one-half wavelength apart and connect them in pairs with 425 -ohm matching sections as shown in the diagram. The centers of the matching sections connect to two $3 / 4$-wavelength 425 -ohm sections which are connected in parallel across the 300 -ohm lead-in. The 425 -ohm matching sections may be $1 / 4$-inch tubing spaced $41 / 2$ inches or No. 12 wire spaced $11 / 2$ inches.

This stacking arrangement can be used for TV antennas cut to other frequencies and having different impedances. The length of the matching sections and the interbay spacing in uavelengths will remain constant. The spacing and size of the conductors used in the matching sections are determined by the impedances of the line and antennas.

Thatisswas

ANNOUNCES
NEW LOW PRICES on 17"-20" TV KITS, SETS, CHASSIS and CABINETS

SAVE UP TO 50% !
Transvision makes the finest TV KITS, SETS, and WIRED CHASSIS that money can buy. PRICED AMAZINGLY LOW. Kits are easy to assemble. Give top quality picture and sound. Ideal for both hobbyists and dealers.
BEAUTIFL'L NEW CABINETS Write for Catalog RE

Write for Prices and Details Todayl
TRANSVISION, INC.
Dept. RE
NEW ROCHELLE, N. Y.

BAND-REJECTION FILTER

? Please print a circuit of a filter network which will attenuate by 3 db or more all signals between 880 and 3,400 cycles. This filter is to be used in a 200-ohm audio line.-M. T., Peru, Ind. A. A band-rejection filter having the characteristics you want would be diffi-

cult to design and construct, so we have prepared this circuit which should do the job for you. It consists of a three-section high-pass filter network cutting off at 3,400 cycles paralleled by a three-section low-pass filter cutting off at 880 cycles. Both of the filter units being designed for $400-\mathrm{ohm}$ lines, there will be a slight mismatch in each. The existing mismatch should not be great enough to affect the performance of the circuit as a whole.

It is recommended that the highand low-pass filters be shielded from each other. The shunt inductors should be mounted so their axes are at right angles to each other.

ANTENNA TUNING COUPLER

? I use a 3fo-foot long-wire antenna for broadcast and intermational shortware reception. I would like to have details on constructing a coupler for tuning the antenna system for optimum performance on any frequency and coupling it to a receiver which has terminals for a doublet antenuu.-G. T., Litfle Rock, Ark.
A. The diagram shows a tuner that should do much to improve the perform-

ance of your antenna. Two 365 -ruf capacitors are used. C1 is in series with the antenna and effectively shortens it. The parallel-tuned circuit has the effect of lengthening the antenna. The coil consists of approximately 30 turms of No. 12 or 14 bare wire on a $21 / 2$-inch form. The turns should be spaced the diameter of the wire. A small clip should be provided for shorting out turns when necessary. The pickup loop is 3 turns of No. 18 hookup interwound with the turns at the antenna end of the large coil.

Remember, however, that short-wave station signals are often weak. In some cases it might be advisable to use special directional antennas.

ELIMINATING NECK SHADOW

? I am having trouble eliminating shadows on the left and lower right sides of the $12 L P 4$ picture tube in my $T V$ set. I'vo tried replacing the $6 B G 6-G$ and $5 \mathrm{~V}_{4}$-G damper tube, but now tubes don't remove the shadow. Can you help me to correct this condition?-N. LaS., Torrington, Conn.
A. The dark areas or shadows on your picture are probably neck shadows caused by obstruction of the electron beam before it reaches the sides of the screen. This condition exists when the deflection yoke or focus coil is too far back on the neck of the tube. It may also occur when the neck of the tube is not centered in the focus coil. Make sure that the neck of the tube is horizontal and parallel to the chassis and that it is centered in the deflection yoke and focus coil. Try moving the focus and deflection coils as far forward as possible. Transpose the leads to the focus coil. Reversing these leads will reverse the relative operation of the centering adjustment screws but will not affect the operation of the set. Misadjustment of the ion trap magnet may cause the trouble, too.
Sometimes small shadow areas can be eliminated by moving the picture slightly off center and advancing the width control. This does not remove the shadow, but hides it behind the mask.

Neck shadow also has been traced to a distorted picture tube in which the axis of the neck is not in line with the axis of the bulb. Close examination will show the neck to be slightly off center or to be cucked off at an angle. Rotating the tube in its mount will often remove shadow's which will not respond to more conventional treatment.

PHONO MIXER PANEL

? Please print a diagram of a monclectromic mixing and volume-contiol panel jor use with three phonograph pickups, without interaction.-P. C., Haccrford, Pa.
A. Interaction between the controls can be minimized by connecting isolat-

ing resistors in series with the arm of each control as shown in the diagram. The value of each isolating resistor should be approximately one-half the resistance of each control. Use the smallest value which will prevent interaction. This setup can be used for an indefinite number of controls. The only disadvantage is that the signal input may drop and a tone-control effect is noticed if several controls are simultaneously set at zero.

PHOTO TIMER

 ? I would like to have a diagram of a photo timer having three controls for setting the timed interval from 0.1 second to 100 seconds. If possible, please design the circuit aroumd a 112LAT-GT and a 2,500-ohm plate relay.-H.W. H.,
A. This circuit will time intervals from 0.1 second to 101 seconds in decade

SI-EACH RES 2.2MEG: S2-EACH RES=22OK; S3-EACH RES 222 K S4-SPDT SPRING RETURN TIMER SW; 55 -FOCUS SW; 56 -POWER SW
steps of 0.1 second. For high accuracy, the resistors in the timing circuit should be matched pairs of 5% or better.

Calibrate the timer on the 0-100second range using a stop watch for measurements. If the timed interval is too long increase R1 and decrease R2 slightly. If it is too short, make R1 larger and R2 smaller. Slight changes in calibration can be made by varying the tension on the relay spring. Remember that absolute accuracy of timing (if required) depends on stable line voltage regulation.

TRANSFORMER SPECS

- Please give specifications on the output transformer used in the somend alarm described on page 31, October, 1950, issue.-E. H., Columbus O.
A. Any plate-to-voice coil output transformer will do the job. However, it is advisable to use one having a primary impedance of 20,000 ohms or more. Your best bet will be to use a standard intercom input transformer which may have a secondary impedance of 38,400 ohms or ligher.

Many constructors use standard output transformers connected in reverse when small PM speakers are used as microphones. Pickup improves in almost all cases where the output transformer is replaced with a standard intercom input transformer. It should be remembered that specialized input transformers are so designed as to give maximum transfer of energy with minimum pickup of noise and hum. Also, various input impedances can be matched more readily.

You DONT have to know the language

You can be certain that in any language, anywhere in the world, it's UNIVERSITY for top acoustic reproduc tion... for every indoor and works constantly to meet the neering needs of sound casting techniques as they develop. Thus, UNIVERSITY loudspeakers keep in step with the times through design by farsighted experts, plus field-tested performance that means trouble-free operation

UNIVERSITY
 LOUDSPEAKERS • INC

80 SO. KENSICO AVE. WHITE PIAINS, N. Y.

Trupical of dependable UNIVERSITY reflex heovets costings and and oufdoor use. Mode of ponded to precise formulae fouge spinnings ex. moul properties. Sturdy. serrated superior acousmounting brocket simplifies instatilastable assures positive grip. Exclusive instlation and longement prevents driver unit froscrew ar loose. All parts chemically trom working maximation of hard-baked treated prior to maximum protection against wamel finish for mountingents. PMA adopter facilit and cormounting. MA adopter facilitates pipe
-

How many times have you lost money because of a mis. take in figuring? Do you know how to figure guickly and correctly? Can you figure discounts. interest rates. taxes and all the other calculations you meet up with in your daily life?
Are you having trouble quallfying for Civil Service Exams or Armed Services Promotions, because you're not up on mathematios?
Here is the book that gives you a good background in mathematics: that takes all the irritation and drudgery out of it. You don't need to be scared of mathes with because here's the sutions. Here's the hook for men in radio jobs. for business men; technicians and craftsmen, explain. jobs: for business men, techniciats andic problems in easy. to-understand words and illustrations.
Yes, it's the key to a simple understanding of mathematics. It's a real home-study course in mathematics for the man who's alert to its importance in the world today.

ELEMENTARY MATHEMATICS

 - EASY - SIMPLIFIED - PRACTICAL -

AUTOMATIC M-90 AUTO RADIO

- Six Tube Superheteradyne - Three Gang Condenser - Powerful, Long-Distance Reception Fits All Cars, Easy Installation
- Mounting Brackets Included
- 6 Tube model M90. \qquad . $\$ 33.87$ tpprox. shipping weight (11) elecen pounds MAIL US YOUR ORDERS All orders filled within 24 hours. Stancard Brand tubes 50% off list

Wholesale Electronics

Fifth of Commerce
Fort Worth. Texas

PRECISE COMPANY 942 Kings Highway BROOKLYN 23. NEW YORK
 materials and components.

Aluminum foil, condenser paper, chemicals - all items used in our electrolytics - are purchased against strict specifications from thoroughly reliable sources, then subjected to exhaustive analysis and tests before usage.

Screening out all possible trouble at the source makes the finished product trouble-free - eligible to bear the Planet trademark.

For complete information, write for the latest Planet Catalog, C-2.

PLANET MANUFACTURING CORPORATION 225 Belleville Avenue, Bloomfield, N.I.

 OLDEST, BEST EQUIPPED SCHOOL of ITS KIND in U.S. Young and Older Men
Come to the Great Shops of Coyne in Chicago. Get Practical rainingin TELEVVISION-RADIOorELEC for a better job ur better service rating.
START NOW-PAY LATER You can finance most of your tuition, pay for it later
incasy monthy payments. Special plan for men of
Draft Age. Yurt Draft Age. Pirt time employinent service available
GI APPROVED FREE BOOK Clip coupon for hig Free Inlustrated Bhol, Indicate below, conarse
o salesman will call. Act Now.

THE FUND TOPS $\$ 8,000$.

HELP. FREDDIE-WALK FUND

It has heen a source of great gratification to us to note that the Freddie Fund with this month has reached \$8,176.78.

Little three-year-old Fredie, as our reader: know by this time. is the completely legless and armless son of Herschel Thomason, Arkansas radio technician.

Freddie still has to make constant trips to the North where his doctors are fitting him with the necessary appliances so in time he will the able to walk and use artificial legs and arms. The case is greatly complicated by the fact that Freddie has not a vestige of either arms or legs and there are no stumps on which to fit appliances. In time he will have to use his body muscles to obtain articulation for the artificial arms and legs.

The FAMILY CIRCLE Magazine. which also became interested in Freddie's case, continues to be high on the list of contributions which we report below:

FAMILY CIRCLE magazine contributions.	
Balance cs of April 19, 1951	\$253.98
A Proyeriul Mother-New Hartford N	2.00
Susan R. Eaker-New Castle, Ill.	5.00
Mr. \& Mrs. William F. Barnes-Chitugo	5.90
Lucy B. Blaich-Los Angeles, Cal.	3.50
Mr. and Mrs. J. L. Boyd-Charlotte N. C	6.00
Mr. \& Mrs. Jemes Brightwell-Belpo it W. Va	1.00
Mrs. C. Portlond, Oregon	2.00
Mrs. John M. Clausen-Rainier. O	1.00
Eleanor Clementi-Pueblo, Colo	1.00
Mrs. Jean R. Duff—Peekskill. N. Y.	5.00
Mrs. Glodys A. Donnelly-East Ora-ge N. J	10.00
Mrs. George Eshelman-Quarrivile.	2.00
Mrs. Chorles ! Fabso-Cincinnati 2nio	1.00
Mrs. F. Faider-Brooklyn, N. Y	2.00
Mrs. F. Gouoet-Philadelphia. Pa.	50
Mrs. Charles D. Grafton-Philade ohia Pa	2.00
Elizabeth J. Griffin \& Tris-Cheyende Wyo	200
Mrs. A. Grow-Trail, Oregon	1.00
Catherine T. Haley-Chicago	1.00
Mrs. W. E. Hyatt-Glendale, Cal	10.00
Mr. \& Mrs. Fred E. Jenni-Horican Wisc.	5.00
Sara Joyner-Richmond, Va	1.00
Mr. \& Mrs. Chester R. Kennedy-Pittaburgh, Pa	10.00
Mrs. E. F. Kennedy-Philadelphia. Pa.	1.00
Mrs. E. F. Kalacny-Englewood, Colo.	2.00
Ruth Lapo-Syracuse, N. Y	2.00
Jean McDowell-Philadelphia, Pa.	1.00
Mrs. George D. Manderbach-Wyomissing. Pa	1.00
Mrs. D. Newton-El Cajon, Cal.	1.00
Mr. \& Mrs. S. Wm. Pattis-Chicago, lll	6.00
Ardelle Quinn \& Mother-Glendale Cal	1.00
Roger \& Carole Ropp-St. Lowis, No.	1.00
Nettie Rickert-Belimore, N	3.00
Donold L. Sandberg and Family-Long Beach Calif.	5.00
Mrs. E. K. Schoen-Phoenix, Ariz.	2.00
Rachel Schwartz-Brooklyn, N. Y.	1.00
Mrs. S. Smith-Burlington, Vt.	1.00
Mrs. Borbaro ل. Triche-El Segundo Calif.	5.00
Mrs. E. Wesler-Oakland, Calif.	5.00
Mrs. L. L. Whitehead-Washington, D. C.	2.00
Mr. \& Mrs. L. F, Williams-Chapel Hill, N. C	6.00
Mary Witkowski-Painesville, Ohia	1.00
FAMILY CIRCLE contributions recsived up 10 May 18 1951	

1.00Mrs. S. Smith-Burlington, Vt.
5.00Mrs. E. Wesley-Oakland Calif
Mrs. L. L. Whitehead-Washington, D. C 2.00Mory Witkowski-Painesville. Ohia1.00May 18, 1951$\$ 379.95$

We are also pleased to report the following collection made:
$\$ 5.00$ contributed by the Yadkin Valley Radio Club of North Wilkesboro, N. C. through the efforts of Robert M. Harvey.

RADIO-ELECTRONICS CONTRIBUTIONS

Eclonce as ct Agril 19. 1951
$\$ 7.691 .83$ A Friend-Dayton, Ohio........ 4.00

Fred A. Anderson-Wilmington, Dela. 1.00
1.00
$\quad 1.00$

Anonymous-Wallingford, Conn.
1.00
1.00

Anonymous-Wallingford, Conn. 1.00
.50

Anonymous-Chicago,
.50
Anonymous-Loke Odessa, Mich...
2.00

Anonymous-St. Louis, Mo.
Anonymous-Hyshom, Mont.
Anonymous-Gilead, Nebr.
Anonymous-Manchester, N. H.
Anonymous-Bernardsville, N.J.
Anonymous-Lanikoi, Hawaii
F. Blum-Newark. N. J..
E. F. Bowman-St. Louis, Mo.

Gearge Cheakas-Dallas, Tex
Addie Lee Domangue-Houma, La.
H. W. Fisk-Son Froncisco, Colif.

Alexis Hebert-Southbridge. Mass sigmund S. Kahn, M.D.-Braoklyn, N. Anthony Kolwaxczyt-Dudley, Mass... Scul Kozuck-Orarige, N.J.
Frederick M. Levin-Philadelphia, Pa.
Fred Lynn-Brooklyn, N. Y..
H. D. McBride-Los Angeles, Colif....... Wm. F. McGewan-Alameda, Calif.
Floyd A. Marsellos-Houston. Tex...
A. Mencos-Ticuisati, Guatemala, C. A. loseph M. Miorrone-Philadelphia, Pa. Geo. W. Oleson-San Jose, Colif. Walter O. Pacuette-Southbridge, Mass orres H. Parsons-Charleston, W. Va Iosenh Piliero-Maspeth, N. Y A. V. Predki-Detroit Mich. George Roberts - Willow Grove, Pa. D. R. Scroggin-Lake Forest, III... D. R. Scroggin-Lake Forest. III..... Theo. L. Sevtold-Washingtan, D. C Stanley Sekal-Utica, N. Y..
Mox B. Stern-Solt Lake City, Utah. 'ohn Tensen-Gothenburg, Sweden Eoug Wilson, W9GWE-Fort Wayne, Ind Yodkin Valley Radio Club-
No. Wilkesboro, N. C..
FADIO-ELECTRONICS Contributions FAMILY CIRCLE contributions

Total received to May 18, 1951

MORE ON DOC GAINES' BOOSTER

The coll data was inadvertently omitted from the article "Home Built Booster Increases TV Range" in the June issue. Herewith the necessary data, as well as a photo of the booster which arrived too late to be published with the article.

Since layout is often as important as circuit at very high frequencies, the photo may be helpful to constructors.
 The centel of the chassis, and the two tuning slugs project from the front when the unit is turned upright.

Coil Data For Ecoster				
Chonnel	Coil	Turns	Length (inches)	Remorks
2 to 4	L2 and L3 LI and L4	$\begin{array}{r} 11 \\ 3 \end{array}$	$\begin{aligned} & 11 / 16 \\ & 11 / 16 \end{aligned}$	Insuloted from LI or L4 Wound over L2 or L3
5 and 6	L2 and L3 LI and L4	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 11 / 16 \\ & 11 / 16 \end{aligned}$	Insulated from LI or $\mathrm{L4}$ Wound over L2 or L3
7 to 13	L2 and L3 LI and L4	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$11 / 16$	Insulated from LI or L4 Centered on L2 or L3
	L5		11/4	Closewound on $1 / 4 \mathrm{in}$. dia. form. No. 22 enamelled wire
Use No. 19 enamelled wire, coil form Millen 6904E ef quivolert for LI, L2, L3 and L4.				

Kadio THirty=yibe Bears Ago
7n mernsbata publications

Some of the larger libraries still have conips nf ELEC. Some of the larger libraries still have ronips nf ELEC.
TKICAL EXPERIMENTER on fite for interested readers.

JULY, 1917 ELECTRICAL EXPERIMENTER

Testing Radio Units with Dummy Antenna, by Frank C. Perkins
A Human Radio Outfit
How the Government Seals Radio Apparatus
How Radio Brought the News to the Farm
Wireless on the American Submarine Chasers. by Samuel Cohen
Light-Weight Radio Transmitter and Receiver
Amateur and Experimental Radio Research, ly Raymond Francis Yates Wireless Telephone Hook-up

We Buy First Quality Tubes for Cash!

Fully Guaranteed • Brand New • Immediate Delivery

125

115 114 144

104 354
 354 $3 V 4$

6 SL5
6AR5
6BA6
6SA7GT
6SK7GT
6SN7GT
6 VSGT
$6 \times 5 \mathrm{GT}$
12 BH 7

$183 G T$ 154 394 $6 A B 4$ $6 A S 5$ $6 A Q 5$ $12 A 8 G T$ $12 A U 7$ $12 S A 7 G T$ $12 S K 7 G T$ $12 S Q 7 G T$ $35 L 6 G T$ $50 L 6 G T$

> 1×2
5V4G
6AC7
6AG5
6AH6
6BC5
6BG6G
6BQ6G
6CD6
6J6
6T8
$12 A T 7$
$12 S N 7 G T$

WRITE TODAY FOR COMPLETE LISTING!

Terms: $\mathbf{2 5 \%}$ with order, balance C.O.D. All merchandise subject to prior sale, F.O.B. New York Cify

$$
\begin{aligned}
& \text { ele } \text { ision Materials Corp. } \\
& 114 \text { LIBERTY ST., NEW YORK 6, N.Y. - COrtlandt 1-4307 }
\end{aligned}
$$

PEN-OSCIL-LITE

Extremeiy convenient test oscullator tor ali radio servicing altgnment Small as a pen © Self powered. Range from 700 cycles audio to over 600 megacycles u.h.f. : Output trom zero to 125 - Write for information

GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

TV PARTS

Complete Stock For Fast Delivery ... af Rock-Botfom Prices

TV TRANSFORMERS

57TO11-Vert. Oułpuł Transformer
 43TO11-Vert. Output Transformer Nut as aboue, Mount. center $\because 13 / 14$ 16TB11 Vert. Block. Osc. Transformer
 $21 T B 11$ Vert. Block. Osc. Transformer samp as abore Moulit renter : $\$ 1.19$
70° DEFLECTION YOKE
Special!

Lowest Price Conical Array CAN BE STACKED FOR FRINGE AREAS HAS 8 INTERCHANGEABLE ELEMENTS SNYDER MODEL XA-44

MHOLESALE \triangle RADIO PARTS CO., Inc. 311 W. Balitmerest. BALTIMORE 1, MD.

CONVERSION DATAE

ELECTRONIC LITERATURE

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addresses are listed at the end of each item. Use your letterhead-do not use posteards. To facilitate identification mention the issue and page of RadIo Electronics on which the item appears. All literature offers void after six months.

BUSINESS GUIDES AND FORMS

A new 4-page catalog lists items designed to simplify billing and filing, and to enable the service technician to provide faster and more efficient service. Among the items listed are TV service contract forms, job tickets, radio and TV service record forms, and Radio Service Standard Rate Book, designed to assist the technician to prepare a fair bill for services and material in the shortest possible time.

The catalog is available from Oelrich Publications, 4135 N. Lawler Ave., Chicago 41, Ill. Gratis.

SELENIUM RECTIFIER CATALOG

A new illustrated catalog describes the Seletron line of miniature selenium rectifiers as well as a selected group of high-current units. The catalog also illustrates some typical circuit applications of selenium rectifiers.

Available from Sales Department, Seletron Division, Radio Receptor Co., Inc., 251 W. 19th St., New York 11, N. Y. Gratis.

TRAINING-AIDS BROCHURE

Sylvania is distributing a brochure listing their wall charts, lesson folders, TV servicing booklets, color-code and radio symbol charts, and tube manuals.
Available from Sylvania Electric Products Inc., Emporium, Pa. Gratis.

INDEX TO SUPREME MANUALS

The new Complete Index to Most-Often-Needed Radio and Television Servicing Information is a cross reference to the contents of all the volumes in the Most-Often-Needed diagram series published by Supreme Publications.

Available from Supreme Publications, 3727 W. 13th St., Chicago 23, Ill. Gratis. Send $3 \&$ stamp for postage.

TV ANTENNA GUIDE

"TV 'Tenna Tips" is a pocket-size reference manual containing useful data on TV antennas, installation problems, dimensions of antenna elements, channel frequencies, and answers to a number of questions most often asked by TV service technicians.

Available from Snyder Mfg. Co., 22nd and Ontario Sts., Philadelphia 40, Pa. Gratis.

QUARTZ CRYSTALS CATALOG

Catalog No. 51 issued by The James Knights Co. is a 5 -page illustrated brochure describing the JK line of quartz crystals and crystal ovens. Crystals for oscillators, filters, and transducers are available in the frequency range between 3 kc and 100 mc .
Available from The James Knights Co., Sandwich, Ill. Gratis.

BC. 645 XMTR RECEIVER 15 Tubes $\mathbf{4 3 5}$ To 500 MC

$\$ 2.45$

WILLARD 2-VOLT

 STORAGE BATTERY 20 Ampere-HoursEvact replacement for GE port. ables for LB-500-
BRAND NEW. Each $\$ 2.69$

WILLARD MIDGET

G-V STORAGE BATTERY amp hour rating. Transpar| ent plastic case. Brand new. |
| :--- |
| $30^{\prime \prime} \times 113^{\prime \prime} \times 23 /{ }^{3}$ high. Uses | Etandard electrolyte. $\$ 2.65$

ONE-QUART BOTTLE

BATTERY ELECTROLYTE
Made by Willard, for above storage batteries. 1 quart sufficient for two SPECIAL.
per qt. bottle $\$ 1.45$

7-PRONG 2-VOLT RADIO VIBRATOR for Portable and Farm Sets Replace ment for GE
$\$ 1.95$

STORAGE BATTERY

 STORAGE BATTERYNavy Standard BRAND Navy Standard
NEW. Jo ampere
hour rating $\mathbf{\$ 7 . 9 5}$ Please include 25% Deposit with order-Balance C.O.D. MINIMUM ORDER $\$ 3.00$. Ali Shipments F.O.B. Our Ware

TV ANTENNA CATALOG

The new VEE-D-X catalog No. 51 includes technical information on their complete line of television receiving antennas and accessories such as towers, switch boxes, lightning arresters, and various types of antenna installation hardware.

Available from LaPointe-Plascomold Corporation, Windsor Locks, Conn. Gratis.

TV TRANSFORMER CATALOG

The 1951 edition of Stancor's TV transformer catalog and replacement guide contains 36 pages of information relating to replacements for power, audio, blocking-oscillator, and deflection transformers, filter chokes, deflection yokes, and focus coils for over 900 TV models and chassis made by 71 manufacturers. Also listed are mechanical and electrical specifications on 75 Stancor transformers and related components for TV replacements and conversions.

Available from Standard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill. Gratis.

STAMPED CIRCUITS BOOKLET

A 16-page illustrated booklet, "Electronic Circuit Próduction by Die Stamping Explained," describes a die-stamping process used for mass-producing electronic and electrical circuits. Also available is a 20 -page catalog listing and illustrating terminal strips, connectors, plugs, pin-board assemblies, and special sockets for various types of electron tubes.

Available from Franklin Airloop Corp., 43-20 34th St., Long Island City 1, N. Y. Gratis to interested parties upon request.

TV ANTENNA CATALOG

The Brach line of TV antennas, antenna couplers, matching transformers, and lightning arresters and other accessories are described and illustrated in catalog $51-\mathrm{T}$. This catalog is constructed like a standard manila folder to simplify filing, and is punched to receive additional inserts.

Available from Brach MIfg. Corp., 200 Central Ave., Newark 4, N. J. Gratis.
-end-

Suggested by Richard H. Rogers
I think I must have hit the jackpot. It's been going for 3 days

BARRYJULY SPECIALS ALL MERCHANDISE FULLY GUARANTEED

- ULTRA—COMPACT MULTIMETERS
 DC: O. 150 MA . OHMS: $0-100,000$ OHMS
With Leads, Batterya instrucions. Brand new, boxed. only $\$ 8.65$ postpaid

SELENIUM RECTIFIERS
F.W.B., FWCT, $3 \Phi_{\text {, }}$ Volt. DBLR, etc.

Full Wave Bridge Types

Phone: REctor 2-2563 Cable: Barrylect, N. Y.
ELECTRONICS CORP. 136 Liberty St., New York of N. Y. S5.00 Min. Order-25" Deposit with orders ALL MERCHANDISE FULLY GUARANTEED

Every RADIOMAMMcan use these $\begin{aligned} & \text { Every page of } \\ & \text { Elow to } \\ & \text { plify } \\ & \text { padio } \\ & \text { pairs }\end{aligned}$	
SERVICE HINTS	ed with on-the-
Valuable Manual Yours-FREE Write today-no obliaation.	
FEILER ENGINEERING CO 8026 N. Monticello Ave., Skokie. II	Dept. 7RC1-1 Suburb of Chicago)

Television is moving fastKeep up with it in RADIO-ELECTRONICS

d8is

EMC ECONOMY

Wifll the Technician

DU MONT-WU COALITION

All sections of the service industry have reacted vigorously to the proposed Du Mont-Western Union coalition in television servicing (RadioElectronics, June, page 12). General opinion is that in the long run, service by over-large organizations will prove uneconomical, but that many independent organizations will be ruined while the proposition is being proved.

Television Contractors Association of Philadelphia has presented probably the best reasoned-out reaction to the plan. In a release from their executive secretary, Paul V. Forte, reporting on a recent meeting of the organization, it was made clear that the nembers belicved:
"That there was nothing illogal or illegitimate in the Du Mont-Western Union arrangement" . . . but Du Mont was probably acting in disregard for the best interests of television; and that the arrangement" foreshadowed the disintegration of many service contracting businesses across the country," if and when the intentions of Western Union to operate on a national basis were realized.
In view of the fact that "this is a free country and anyone can go into business if he has the money
TCA could see no sense in issuing probably fruitless resolutions of condemmation, but felt that it was the duty of the service industry to obtain full information on the proposed action, so that the various sections of the industry could take whatever actions might be deemed useful to protect the future of the independent service contractor.

To this end, 20,000 copies of a news story and editorial in the association's publication, The $T \mathrm{~V}^{r}$ Trmer, have been printed for wide distribution throughout the service and related fields. Interested parties may obtain copies from Paul V. Forte, Executive Secretary, TCA, 158 North 20th St., Phila., Pa.

MORE LEGISLATION

Two more states, Wisconsin and New Jersey, have come out with bills designed to affect television and radio servicing. At the time of writing, both bills had been referred to committee.

The Wisconsin law proposes setting up a Board of Examiners in radio and television. All persons desiring to engage in "radio and television electronics" for profit or compensation must obtain a certificate of registration which is obtained by paying a $\$ 25$ examination fee and passing an examination in theory, practical knowledge, and skill in the manipulation of equipment and tools. Apparently the term "radio and television electronics" means radio and television servicing to the legislators of Wisconsin, as the registration does not apply to dealers.

Attempts to practice without the certificate would be punishable with a maximum penalty of $\$ 100$ fine plus three months' imprisonment.

The New Jersey bill, like a number of others recently introduced, seeks to provide that funds paid in advance for

OUR AUGUST ISSUE

Big-tube conversions for existing television receivers will be featured in several articles in the August issue of RADIOELECTRONICS. This is an issue that no television repair technician can afford to miss. Reserve your copy now!

7 HARD TO GET ITEMS
 at big savings to you

 AMAZING BLACK LIGHT

250-watt ultra-violet light source. Mokes fluorescent articles glow in the dark,
Fits any lamp socket. For Fits any lamp socket. For
experimenting, entertaining, unusual lighting effects.
Ship. wt. 2 lbs.
ITEMNU. B7
\$2.45
little giant magnet
Lightweight 4 or. ALNICO permanent magnet. $13 / 4 " \times 11 / 2^{\prime \prime}$. Lifts more than 20 TIMES ITS OWN perimenters. Shipping weight $3 / 4$ ibs.
ITEMNOLVISA
\$2.45

POWERFUL ALL PURPOSE MOTOR
Sturdy shaded pole A.C. induc. tion motor. 15 watts, 3000 rpm.
$3^{\prime \prime} \times 2^{\prime \prime} \times 1 \mathrm{~s}^{\prime \prime} 4^{\prime \prime}: 4$ mounting studs: $3^{\prime \prime} \times 2^{\prime \prime} \times 13 / 4^{\prime \prime}$: 4 mounting studs:
$7 /$ B $^{\prime \prime}$ shatt, $3 / 16^{\prime \prime}$ diameter: 110 . 120 volts $50-60$ cycles. A.C. only. When geared down. this
unit can operate an 18 " turn. unit can operate an 1 lb . dead weight. Use it for fans, displays, timers and many other plays, practical purposes. Ship. wt 2 lbs.
ITEM MO. I47
UNUSUAL BUY
\$2.45

WATTHOUR METER

WESTERN ELECTRICBREASTMIKE
Lightweight 1 lb carbon micro.
onone A ircroft type. Breastplate $3 \begin{aligned} & \text { phone Aircroft type. Breastplate } \\ & \text { mounting adiustoble } \\ & 2 \text {-way }\end{aligned}$ swivel. Easily fostened straps. For
home broodcasts, communicahome broodcasts, communications etc. Complete with 6 faot
cord hord rubber plug. Sheracord, hard rubber plug. Shera-
dized plate, non-rusting finish Ship. wt. 2 liss. non-rusting inish
ITEM NO. 152
NEW LOW PRICE
$\$ 1.50$
TELEPHONE TRANSMITTERS
Genuine transmitters made by Kellogg. Western Electric. Stromberg Carlson,
Workon two dry cellis Work on two dry cellis For PA. systems, in tercoms, ather proc
tical uses. Shipping tical uses.
weight I lib.

ITEM IGE VALU
$\$ 2.45$

250 POWER TELESCOPE LENS KIT Make your own high powered 6 ft . telescope! Kit contains $3^{\prime \prime}$ diam. $75^{\prime \prime}$ focal length, ground lens and necessory eye pieces. Magnifies 50x to 250x. Full instructions. Ship. Wt. $1 / 23$.
ITEM NO. 123
$\$ 2.95$

hUDSON SPECIALTIES CO

40 West Broodway. Dept. RE-7.51
40 West Braadway.
New York 7. N. Y.
1 amo enclosing fulf remiluance for ftems circled below.

 C.O.D. ORDERS ACCEPRED ONLY WITH 20\% DEPOSIT
INCLUOE SHIPPING CHARGES. C.OCLUOE SHIPPING CHARGEE.

\qquad
\qquad
City Zone. . . . State.
television servicing be placed in a trust fund and that monthly withdrawals shall be equivalent to the proportion one month bears to the time of the contract. The preamble states that this has become necessary because "numerous persons have paid in advance sums of money for service contracts and thereafter have failed to receive said selvice due to the financial failure of the service organizations, resulting in financial loss to the inhabitants of this State . . . the unscrupulous tactics of such organizations tend to harm ethical businessmen and to discredit the television industry generally."

PIX TUBE WARRANTY

Warranty problems on picture tubes are likely to produce more than the average number of warranty headaches for the television service contractor due to the slow movement of television sets in late spring. Picturetube makers since late last year have cut down their warranty from one year to six months, and the result is that some replacement tubes may be out of warranty before they are sold.
General Electric and Ken-Rad have met the situation by arranging that picture tubes sold through their franchised distributors and dealers have warranty protection for six months from dute of purchase by the actual consumer.
That the matter is an important one may be gathered from dealers who estimate that from 1 to 15% of their television picture tubes show defects within the first 90 days. After that, the number of defects drops to a figure that can be ignored.

LARGER INVENTORY

Joint recommendation of the Radio and Television Manufacturers' Association and the Better Business Bureaus that television contractors keep larger stocks of parts in order to render prompter service met with a sharp reaction from parts of the service industry.

In a letter addressed to Robert C. Sprague as RTMA board chairman, Frank Moch, president of the National Alliance of Television and Electronic Service Associations, points out that the recommendation is out of order because "it does not take into consideration the fact that the TV manufacturer and distributor, and not the service contractor, have accepted fees to guarantee the replacement of parts."

NEW COUPON SERVICE PLAN

Pay-by-the-call television service contracts are being issued by a Brooklyn concern. The plan calls for payment by the customer of fees ranging from $\$ 45$ for a 10 -inch receiver to $\$ 85$ for a 20 inch job. A number of coupons are given the customer, ranging from five for the lowest-priced contracts to nine for the most expensive. He surrenders one coupon for each call and can turn the unused balance in for refund at the end of the year. -end-

cy clear static-free reception of your FM Erite mucic and sport events-ocolusive Conor less than $\$ 10.00$ with this exclusive AM record FM tuner Easily converts any for FM . cevver phono amplifier or PA system tor F and cevver, phe entire 88-108 FM band. Tunmerm ands ov-off controls on front panel with terminal on-off controls of 300 ohm twin lead antenna on or connection Extremely easy to install. Uses a $7 F 8$ back Extremely easy to plus a 6 H 6 rectifier in a (remadyne chassis: $6-3 / 4 \times 4 \times 4-1 / 8^{\prime \prime}$. Compleff Size of chassis: 6-3/4 $110-120$ volts $A C-D C$. 9.95 with tubes. For 110
$90.9502 \mathrm{~J}-$-Shpg.

BARGAIN CONICALS

High quality conical TV antennas designed for Full-hard performance Full-hard elements and all-aluminum construc. tion provide maximum
 strength and eliminate
rust problems. Broad excessive weight anc TY channels plus Froad band reception on all Concord conicals FM are yours with these excellent conicals. High signal-to-noise ratio or 300 hm -to-back ratio, matches 72150 , or 300 ohm input impedance. Ridged $U, 150$ mast clamp bracket set at proper balan U-bolt prevents antenna from slipping or tance point mast. Fits masts up $1-1 / 2^{\prime \prime} O$ or twisting on less mast.
Sincle Bay. (Not Illustrated).
28-24265J--Wt. 6 lbs.
Double Bay. (Illustrated)
28-24266J--Shpg. Wt. 12 lbs .
300 OHM FLAT TWIN LEAD
Per 1000 ft.
$19-17141 \mathrm{~J}$. Perft.

EMERGENCY UNIT
mooth, quick-action emergency tire pump and smone quicher. Compact...easily mountec fire extinguisher. Highly effective against oil. in limited space. chased combustion. 2.75 gas 9.6549 J .

NEW: 1951

 summer
BUYER'S GUIDE

CONCORDRADIO

CONCORD RADIO CORP. Dept. JG-51 901 West Jackson Blvd., Chicago 7, Illinois

Enclosed \$......... (Include shipping charge) Rush me the following equipment,
-99-9502J--FM Tuner
\square 28-24265J--Single Bay Conical
$\square 28.24266 \mathrm{JJ}$--Double Bay Conical
口19-17141J--300 Ohm Twin L
Send FREE Summer Buyer's Guide
\qquad
Address
city................zone.....state

NEW ADIRESS

still the same best buys
NEW MOBILE POWER UNITS W/FILTERS
DM21M 14v in 230v 90 ma out............... $\mathbf{\$ 8} \mathbf{8 0}$
BD77L 14v in 1050r 35 ma out.............. $\$ 15.00$
PET3 28v in 1050r 350 ma out............... $\$ 24.00$
PE94C (for SCR522) 28v in...
PE98 (for SCR522) 14v in. $\$ 15.00$

MPIOG dual for TA2 24 v in $\$ 65.00$
$\$ 75.00$ PE86 24v in 230v 50ma out. $\$ 75.00$
$\$ 4.50$
Shipped Rail Exp. or Freight Collect LONG ISLAND RADIO COMPANY
P.O. Box 474, Montrose, Penna.

You can't beat RADIO.ELECTRONICS for complete coverage of
RADIO. TELEVISION, AND AUDI

WESTINGHOUSE H-196
An elliptical shadow which produced an eclipse-like effect on the lower left side of the TV picture was finally

traced to failure of the 390 -uuf capacitor at the plate of the 6AQ5 horizontal oscillator tube. The position of this capacitor is shown in the diagram. Be sure to check the 6,800 -ohm, $1 / 2$-watt resistor, as it may have been damaged. -Frank Jusaites

CROSLEY TV SETS

Horizontal sweep sing in the 10-401, $10-404,10-412$, and $10-418$ can be caused by the bracket of the horizontal output transformer vibrating at a subharmonic of the 15,750 -cycle horizontal sweep frequency. Transformers in later sets do not cause this trouble because their cores and brackets have been dipped in wax.

This trouble can be corrected by inserting small wedges between each end of the transformer and the chassis as shown.-Crosley Service Dept.

HALLICRAFTERS SX-42

Reception was normal on all bands except the 55-108 megacycle band. The trouble was traced to resistor R-6, a $2,200-0 \mathrm{hm}, 1 / 2$-watt unit which is used only on the highest band. Replacing the unit with a similar $1 / 2$-watt unit corrected the trouble for a few weeks. Replacing it with a 2 -watt resistor eliminated a recurrence of the trouble.

The tuning meter read normal on FM. The lowest no-signal reading was S-8 for AM reception on all bands. All components in the tuning meter circuit checked good. The 6AG5's in the r.f. stages checked good on a mutual conductance tube tester. Finally, we substituted several 6AG5's and found two which brought the no-signal reading down to S-0. Apparently, many tubes which checked good on the tester lacked sufficient emission to bring the meter to zero in the bridge circuit.-Robert H. Marshall

LOW PICTURE BRIGHTNESS

When low picture brightness is not caused by a defect in the receiver, check the position of the ion trap. If adjusting the trap does not correct the trouble, possibly metal filings may be short-circuiting the magnets. Remove filings with a magnetized screwdriver.

If there is no evidence of a magnetic short circuit, the magnets may be weak. Try a new ion trap.-John T. Bailey

EASY TO LEARN CODE
It is easy to learn or increase soeed ulth an Instructorraph code teacher.
attorils the quickest and most prac Aftaris the quickest and most prac
 to tspical messages on all subjert.
speed ranke 5 to 40 WPM. Alwa) ready-no QRM.
ENDORSED BY THOUSANDS!
The hastructograph Code Teacher
literalistrace the piace of an repe-
ator-instructor and enables ansone to ator-instructor and enables anyone to
learn and master code without fur-
ner ashlitance.
 Wacquired the code" with the Instructograph systent.

ITSTRUCTOARRAF COMPAIT

4701 Sheridan Rd., Dept. RC. Chicago 40 . III.

HAVE YOU A JOB FOR A TRAINED TECHNICIAN?

We have a number of alert young men who have sompletad intensive training in Radio and Television Repairing. They learned their trades thoroughly by working on actual equipment under persuñal, expert supervision. If you need o trained man, we invite you to write for an outline of our course, and for a prospectus of the graduate. No fees, of course. Address:

Placement Manager, Dept. P108.7
COMMERCIAL TRADES INSTITUTE 1400 Greenleaf

Chicago 26

RL9 or RL7 PHOTO Code Practice Interphone Amp- PRINT. Key													
High Fluelity			PRINT. DRYERS		MNTD on bake-								
Phone Amp. orSpeh.Amo.			DRYERS										
Speh. Amp.			microme ele-										
cosim w choter		Ab. m											
		ker	lated from		Contacts $\$ 1.20$ ea.								
for 44 operation.		Y. ${ }_{9}$	$9{ }^{\text {9\% }}$										
		1on. 2.29	$110 \mathrm{~V}^{8} 5^{60 \mathrm{cy}}$		Key Less Bakr-								
MS49 and 872 FIL XFRM													
Pole Anten na74*10ng. Both for -496 \qquad		Iri: $115-135 \mathrm{y}$ bites			-								
		Pri. 110 S 60 cys Sce			1.8								
$\begin{aligned} & 49 \mathrm{EC-605} \\ & \text { TN- } \\ & \text { TERPHONE } \end{aligned}$		POWER XFRMR											
TERMPLI.													
Easily con-		+V/16A 2.5V\%1.75.											
					BC 604 DM								
verted to an ideal inter-		Tubes		1.95									
communications set		Tuming Units for EC,			be operated on								
		375 \& 191 Diag, for											
home-or		Conver to VBF Frea.											
factory.		TU' $4200-18$			\% funtes meter.								
(Neww/con-					$\begin{aligned} & \text { Less xals. Good } \\ & u \text { used } \text { w/dyn. } \end{aligned}$Sold as is.								
		TU9 77	7700-100										
Diagramm. ${ }_{\text {¢ }}$		TL20 Pr	$\stackrel{\text { Price }}{ } \mathbf{2} 2.4$										
CRYSTALS Low Freq.													
frequencies enclosed. Listed below by tundamental trequency, fractions omitted.													
370	419	445	485	512	391	447							
372	420	446	486	513	392	448							
374	422	455	487	514	393	450							
375	423	458	488	515	3 l 4	451							
376	424	459	490	516	395	453							
377	425	461	491	518	396	454							
379	427	462	492	519	397	455							
380	429	468	493	520	398	456							
381	430	469	494	522	400	457							
383	431	470	495	523	401	463							
384	433	472	496	525	402	465							
385	434	473	497	526	403	498							
386	435	474	502	527	404	500							
387	436	475	503	529	405	501							
388	437	476	504	530	406	538							
412	438	477	505	531	407	540							
413	440	479	506	533	408								
414	441	480	507	534	409								
415	442	481	508	536	411	\$1.49							
416	443	483	509	537	each								
418	4	484	51	390									

Roted roncernix Kenl Po. Minimum Order \$3.(ff
Send M.O. or CHK. Mdse. Guartd. Shpg. Charges Sent C.O.D. Price F.o.B. N.Y.C. Phone Di. 9-4/24

COMMUNICATIONS EQUIPMENT CO.
131 Liberty St. Dept. C. 7 New York City 7. N.

GENERAL ELECTRIC 810

A white vertical bar, shaped like a half moon and approximately 1 inch wide, appeared on the screen after the set had operated normally for 15 or 20 minutes. After the shadow appeared, plate and screen voltages on the 6BG6G were low and anode voltage dropped to 3,000 . We noticed that the blue fluorescence disappeared from the 6BG6-G at the moment that the voltages dropped. The trouble cleared up when the horizontal output transformer was replaced. By applying heat externally to the old transformer, we found that the primary would open when the unit approached normal operating temperature. The transformer cooled so rapidly that the high-resistance open circuit could not be detected.-T. R. Odenath

CURE FOR SYNC BUZZ

Sync buzz may be annoying when the contrast control is turned a little above normal on Motorola sets using TS-14B, TS-23B, TS-52B, and similar chassis. This trouble can be cleared up by making a minor change in the biasing arrangement for the video amplifier. Disconnect the lower end of the 1-megohm grid resistor from the arm of the contrast control and connect it to the cathode of the audio amplifier. By providing a cleaner source of bias for the video amplifier, this circuit modification minimizes sync buzz.-Edward Tanrath

RCA 9T240 AND OTHERS

The symptom was a raster but no
sound or picture. All common causes of this trouble were investigated without finding the fault. The trouble was caused by an open heater in the first video amplifier section of the 12AU7. Failure in this section of the tube causes the bias on the a.g.c. line to cut off the common audio-video i.f. amplifier stages, thus killing the sound as well as the picture. This trouble can appear in other RCA sets which have the same video amplifier and a.g.c. biasing arrangement.-James J. McNamara

WESTINGHOUSE CHASSIS V-2150-176

To reduce horizontal wobble under strong-signal conditions and to increase the contrast range, decrease the value of resistor R437 (between pins 6 and 7 of the 6AU6 a.g.c. tube) from 5,600 to 3,300 ohฉ̃is.

To improve horizontal linearity, replace the $680-\mu \mu \mathrm{f}$ horizontal discharge capacitor C 427 with a $330-\mu \mu \mathrm{f}$ unit.

These changes have been made in late runs of the V-2150-176 chassis used in models H-619T12 and H-619-T12U.-Westinghouse Service Notes

HICKOK 534 TUBE TESTER

If the meter pointer swings wildly when a tube is inserted in the rectifier sockets for checking, look for the trouble in the $150-\mathrm{ohm}$ wire-wound resistor in series with button P-3 and one side of the power transformer secondary. This is a current-limiting resistor. Probably it is shorted.-Wilbur J. Hantz

MODEL RD-1C

A COMPLETE FM TUNER, EXCEPTING POWER SUPPLY, IN THIS COMPACT FORM!
NOT JUST A FRONT-END, BUT COMPLETE WITH 10.7 MC IF AMPLIFIER AND DETECTOR!
Build a high-fidelity, permeability tuned FM tuner which requires only a simple power supply and amplifier to make it work. Tuner completely aligned at the factory, ready to operate. All instructions, tubes, and circuit details furnished. Its voltage requirements may be taken from your audio amplifier or AM radio.

- High sensitivity - No drift - Permeability tuning - Complete tuner - ECONOMICALLY PRICED AT
$\$ 29.95$
SEND YOUR ORDER IN NOW FOR IMNEDIATE DELIVERY.
COLLINS AUDIO PRODUCTS CO.
P. O. Bex 368

Westfield, N. J.

(1) 1

"BEST SELIER" TV Liteatuer
best seler frackage

- Hints for better pictures on 630TV ALL FOR
- 630TV diagram with modifications
- Illustrated TV conversion manual
- Pulse keyed AGC circuit diagram
- RMA resistor \& mica code charts Plus latest catalogs $\&$ flyers

630 TV CHASSIS PART

RCA FRONT END TUNER,
STANDARD TURRET TUNER
STANDARD TURRET TUNER
ESCUTCHEON PLATE, for
SSCUTCHEON PLATENER elther tune
COMPLETE SET OF KNOBS comp. w/tubes
COMPLETE SET OF KNOBS, incl. decal
POWER TRANSFORMER, 295itio. 201Tó
POWER TRANSFORMER, 295π
VERTICAL OUTPUT TRANS.
HORIZONTAL OUTPUT TRANS HORIZONTAL OUTPUT TRANS. HORIZONTAL OUTPUT TRANS.
HOCUS COIL, 247 ohm
FOCUS COIL
DEFLECTION YOKE, 60°
DEFLECTION YOKE, 70°
FILTER CHOKE,
STOM, ONLY

ON TRAP BEAM BENDER
ON TRAP BEAM BENDER, (double) 2030 AUDIO OUTPUT TRANSFORMER (6K6)
PUNCHED CHASSIS PAN, codmiumi हin $630-\mathrm{KIT}$,
HI VOLTAGE CAGE ASSEMBLY, comp
VOLTAGE DIVIDER SHIELD \& COVER,
FOCUS COIL BRACKETS
CATHODE RAY TUBE SOCKET
HV KINESCOPE LEAD,
TV δ^{\prime} LINE CORD, with
VIDEO AND I.F. KIT.
VIDEO AND I.F. KIT, 19 iterrs
EUBUULAR CONDENSER KIT 37 Conde 6 con
CUBULAR CONDENSER KIT
WIREWOUND RESISTOR' KIT
BRACKET AND SHIELD KIT
BRACKET AND SHIELD
OCTAL WAFER SOCKET KIT
MIN. WAFER SOCKET KIT , 13 socke
MIN. MOLDED SOCKET KIT, 2 sockets
MIN. MOLDED CONDENSER KIT, 28 cong CERAMIC CONDENSER
$204 T 2$
$208 T 2$

MICA CONDENSER KIT,
HV FILTER CONDENSER HV FILTER CONDENSER, IOKV-500MMFD 112 $\$ 22.49$ 22.49 22.49 1.34
2.49 2.49
9.97 9.97
2.69 2.69
1.32 1.32
2.47 2.47
2.98 2.98
3.98 3.98
2.29 2.29
3.42 3.42
2.97 2.97
3.98 3.98
1.47 47

Step by step instructions,
For STANDARD 29-TUBE CHASSIS S?. 49 Or DOUBLER 31.TUBE CHASSIS $-{ }^{\circ}$

KEYED AGC KIT

Keyed pulse, fast action, AUTOMATIC GAIN CONTROL KIT to modernize a 630 or any other steady picture on all channels, Eliminates airplane flutter and picture iumping Complete set of parts includes: SOCKET GAUB TUBE BRACKETS WIDTH CONTROL COIL CONDENSERS PE. WISTH CONTROL COIL CONDENSERS, RE. SISTORS
COMPLETE WITH EASY TO FOLLOW STEP.BY-STEP ASSEMBLY INSTRU
GRAMS

TELEVISION CONVERSION KITS

Convert any $10^{\prime \prime}$ TV SET to a LIFE-SIZE 16" to $20^{\prime \prime}$ MODERN TV RECEIVER ASSEMBLED KIT tor 630 CHASSIS Includes - SUB.CHASSIS, FLYBACK TRANSFORMER, IB3 TU'BE CON. DENSERS, RESISTORS, $16^{\prime \prime}$ MOUNTING BRACKETS. STEP BY STEP INSTRUCTIONS
UNASSEMBLED KIT for ANYCHASSIS
SAME SET OF COMPONENTS
$\$ 15.98$

KITS also supp
BRACKETS
\$13.98

SPECIAL SUMMER OFFER ! CUSTOM-bUILT AUTO RADIOS Known Mfr. . . . Licensed By RCA 6-TUBE SUPER (8-Tube Performance) Installs easily in 15 minutes. Appearance and tone quality equal $\begin{array}{ll}\text { to expensive radios supplied by car manufocturers. } \\ \text { FORD } & 1949-5 J-51 \\ \text { PLYMOUIH } & 1949.50-51\end{array}$ $\begin{array}{lll}\text { DODGE } & 49.50 \quad \text { CHEVROLET } & 49-58-51\end{array}$ SIUDEBAKER 50.51 HUDSON 48-49-50.51 צoup paice
complize
$\$ 4.1 .97$ ist Price COMPLET

BROOKS RADIO \& TELEVISION CORP. 84 Vesey St., Dept. A, New York 1, N, Y.

Dr. Oliver E. Buckley, former president of Bell Telephone Laboratories, was appointed chairman of the newly created Science Advisory Committee of
 the Office of Defense Mobilization by President Truman. Dr, Buckley will continue his association with Bell LaboraToRIEs as chairman of the board. Dr. Mervin J. Kelly, former exccutive vice-president, was elected president to succeed .)r. Buckley.

Bill C. Scales was named general sales nanager of the Cathode-ray Tube Division of Allen B. Du Mont Laboratories, Inc., Clifton, N. J., according to an announcement by lrving (. Rosenberg, general manager of the division. Mr'. Scales has been with Du Mont since Sep-
 tember, 1949. His most recent position was southwestern regional sales manager for the Receiver Sales Division.

Robert E. Burrows joined Tromias Electronics, Inc., Passaic, N. J., ca-thode-ray tube manufacturer, as general sales manager. Mr. Burrows has had 22 years ex-

Robert E. Burrows perience in the radio, appliance, and television fields. He was associated with such companies as General Electric Supply, WestinghouseElectric Supply, and Meissner Manufacturing Division of Maguire Industries.

Emil J. Maginot was appointed manager of advertising for Cornell-Dubilier Electric Corporation, South Plainfield, N. J. Mr. Maginot has been associated with the electronics industry for over 25 years. For more than nine years he held sales and advertising executive positions with the National Union Radio Corporation.

William H. Rous, sales manager of the

William H. Rous

Emil J. Maginat American Phenolic Corp., Chicago, was clected a vicepresident of the company. Mr. Rous began his association with the company as assistant to the president, Arthur J. Schmitt.

CRT TUZE MOUNTIPG BRACKETS FOR 630 FOR 12 $1 / 2^{\prime \prime}$ PICTURE TUBES

NO-GLARE TELEVISION FILTERS

For Better, More Clearly Defined Picłures improves contrast. eliminates television glare. Sharpens picture image
SIZES TO FIT ALL SETS IN SMOKE OR BLUE COLORS
FOR ROUND OR RECTANGULAR: PICTURE TUEES

BROOKS RADIO \& TELEVISION CORP. 84 Vesey St., Dept. A, New York 1, N. Y.

ALPFRITE Studio Microphones at P.A. Prices
 Ideal for broadcasting recording PUBLIC ADDRESS
 The ultimate in microphone qualify," says Evan Rushing, sound engineer of the Hotel New Yorker
 - Shout right into the new Amperite Micro-phone-or stand 2 feet away-reproduction is always perfect.
 - Not offected by any climatic conditions. - Guaranteed to withstand severe "knocking around.

 Kontak" Mike Madel SKH, list $\$ 12.00$ Model KKH, list $\$ 18.00$
 Special Write for Special Introductor Otfer:

 Sol EROADWAY - NEW YORK 12. N. Y.
 Canada: Atlos Radio Corp.r Ltd., 560 King 59, W., Toronto

-ATTENTION•

Radio Service Dealers, Hams, Engineers and Experimentors. Quality Merchandise at

REGULAR DISCOUNTS

minha firm imbing for neic accounts. Onf. W(id bmon stan lard hrands (no surplus), such ara mensers. 1RO and centralab resistors and
 (han in tetron suakers. EICO. Precision and (i) Ti milor ransformera. etc.

Wi alao hare a cumplete stock of TV
(IJ. GHDEHS FILIED SAME DAY RECEIVED. vo ohther too fallge on too small. WHODESH.H: ONLY

1. wont satisfiet customers. Oet acmuanted with us

COAST ELECTRONIC SUPPLY CO.
527 W. Main Street, Alhambra, California Phone: ATlantic 9-4361.

CONVERSION DATAE

For RCA Victor 730TV1 see PF INDEX No. 26
fref-get it now!

PLEASE MENTION RADIO-ELECTRONICS

when you write to advertisers

Personnel notes

Don G. Mitchell, president of SYLvania Electric Products, Inc., accepted the 1950 Howard G. Ford Award for his company's achievements in sales growth in 1950. The award was made by the Sales Managers' Association of Philadelphia.
W. H. (Terry) Dunning, formerly a member of the advertising staff of the General Electric Company in Syracuse, N. Y., joined P. R. Mallory \& Company, Indianapolis, Ind., as advertising manager.

William "Bill" Slawson joined John F. Rider Publisher, lnc., New York City, as general sales manager. He was formerly distributor sales manager of Federal Telephone and Radio Corporation.
lichard H. Horf, formerly an associate editor of Radio-Electronics magazine, was appointed Electronics Project Engineer of the Brach Manufacturing Division of the General Bronze Corporation, Newark, N. J

William J. Nezerka, vice-president and general sales manager of The Turner Company, died recently in his home in Cedar Rapids, Iowa.

Louis C. Kunz was appointed product manager for cathode-ray tubes in the Tube Divisions of General ElecTRIC. He was formerly section engineer on cathoderay tubes in Syracuse

Ir. Adolph H. Rosenthal, formerly director of physics, was elected vicepresident and director of research and development of Freed Radio Corporation, New York City.

Joseph Y. Resnick, formerly general manager, was elected chairman of the board of the Channel Master Corporation, Ellenville, N. Y. Harry Resnick was named president and general manager. Harold Harris was elected vice-president in charge of sales and engineering, and Judge Louis E. Berger was elected to the Board of Directors.

David DeWitt was appointed vicepresident in charge of research for the Radio Receptor Company, Inc., Brooklyn, N. Y. Devereaux Martin was named assistant to the president, and Allan Easton manager of communications engineering.

Raymond W. Andrews, former merchandising manager of the Radio Tube \& Television Picture Tube Divisions of Sylvania Electric Products, Inc. was promoted to manager of factory sales.
—end-

MAGARA'S ORED HOT sumbrnspecincs

REMOTE CONTROL FOR

THE THING!

(PLUS $\$ 1.00$ BOOK FREE)

WEBSTER CHICAGO
 (54.50; Per Foot $\$.05$ THRUST BEARING SUPPOKTS UP TO $\$ \$.95$
200 ins. $\$ 8$.

IMMEDIATE DELIVERY

 ON AUTO RADIOSCustom built for all popular 1949-1950 and 1951 automobiles: Chevrolet, Ford, Plymouth, Dodge, Studebaker, Henry J, and Hudson.
Every radio is a powerfully built, 6 tube, super heterodyne with RF stage and 3 gang condenser for sensitive. long distance reception. Latest miniature tubes used, with beam-pawer output and oversize Alnico V loudspeaker, giving plenty of volume with excellent tone. Includes Automatic Volume Control and has low battery drain.
Each model radio is Custom-Built, designed for the individual automobile and can be mounted holes to drill.
When ardering. indicote type oufomobile:
Your Price, all \$4.07 Complete

YOUR MONEY RETURNED IN FULL-

It the New Regency Television Booster fails to improve your television enjoyment! Bring your picture out of the snow and reduce interferencel high Pash-Pull Neurralized friode design assures high gain without adding snow required. bond operation on all channels.

- Single knob tuning control.
- Underwriters approved with 90 day RMA gurantee. L . WEST Price-ONLY $\$ 19.11$

MODEL NFRD-RADIO NOISE FILTER If it doesn't work, send it back! We absolutely guarantee that our Model NFRD will eliminate oll line noises when properly connected to rodios, television sets, short wave sets, motors, electric shovers, refrigerators, vibrators,
oil burners, transmitters, and all ather sources of oil burners, transmitters, and all ather sources of interference. This unit will carry up to 12 amperes ar $11 / 4 \mathrm{KW}$ of power and may be used right at the source of interference or of the radia.
Small size only $3^{\prime \prime} \times 11 / 2^{\prime \prime} 71 / 2^{\prime \prime}$. Very low Small size only $3^{\prime \prime} \times 11 / 2^{\prime \prime} 71 / 2^{\prime \prime}$. Very low price only

$$
\text { Each } \$ 1,95
$$

A SCIENTIFICALLY DESIGNED PHONO SCRATCH FILTER

Resonated of opproximately 4500 cycles effectively reducing objectionable needle scratch without altering the brilliancy of reproduction.
Contains a HI-Q SERIES resonated circuit. Tested by means of an oudio oscillator and an ascilloscope to give 22 db ottenuation with very law signal loss. EASY TO ATTACH
Just two wires to clip on. Compoct $\$ \mathbf{\$ 8}$
Price $\mathbf{8}$

THREE TUBE PHONO AMPLIFIER

An assembled unit reody for instollotion using tone and volume contral and six feet of rubber
cord....................................$~$
$\mathbf{2}$ $\mathbf{9 5}$
With Complet including Tubes)
With Complete Set of Tube
.$\$ 3.95$

PHONO OSCILLATOR

Wireless phono oscillotor tronsmits recording for crystal pick-ups or voice from carban mike through rodia without wires. Can also be used as an intercomm by using P.M. speaker as mike. $\mathbf{\$ 2 . 9 5}$
Price (excluding tubes) $\mathbf{\$ 2}$ With Complete Set of Tubes

NEW HIGH FIDELITY 12" COAXIAL SPEAKER

Becouse of th the well-known monufacturer's name. Has a builtin dividing network-an ideal Woofer-Tweeter com-
bination. Rated at 12 watts, impedance 8 ohms. bination. Rated at 12 watts, impedance 8 ohms.
$\$ 18.50$
Satisfaction guaranteed on all merchandise All prices F.O.B. New York City WRITE FOR FREE CATALOGUE C7
RADIO DEALERS SUPPLY CO.
154 Greenwich St. N ew Yark 6, N. Y.

A TASTE FOR SERVICING

Detr Editor:
I read with pleasure your article, "Five Service Aids," by Jesse Dilson, in the March issue. I have gone Mr. Dilson one further and have used my tongue as a test instrument several times. While visiting a friend's home, he dug up a little a.c.-d.c. set. If nothing lit it was a good bet that there was an open filament. But the only test equipment available would be a flashlight cell.

By placing one terminal of the battery to one of the filament prongs of the tube, and then bridging from the other battery terminal to the other filament prong, it is easy to tell if the filament is open. The tongue is very sensitive, and there is a distinct tickling sensation if the filament is O.K.
L. Esle Bond

Buch/iamon, IV. Va.

ERROR ON OUR PART

Dear Editor
On page 12 of your April issue you have an item about Maddida which contains some misstatements.

Maddida was invented, designed, constructed and sold by Northrup Aircraft. Inc., of Hawthorne, Cal., and our part was limited entirely to a purchase of the first production model. Credit should be given to the Navy for its contribution to the purchase of this machine.

Robert R. Williamson
Stevens Institute of Technology Hoboken, N. J.

CORRECTION

There is an error in the miscellane-ous-notes column of the picture-tube replacement table on page 38 of the May, 1951, issue. Notes a (no exterior coating), b (triode gun), and c (2.5 volt heater) are shown opposite the 12LP4. These notes apply only to the 12 CP 4 . The space opposite the 12 LP 4 should be blank. The 12 TP 4 does not have an exterior conductive coating so the letter a should be opposite it in the right-hand column.

Deflection angles were omitted from three of the column headings. Deflection angles for the 16 -inch metal round tubes are in the right-hand column. The 17 inch glass rectangular tubes have a 70-degree diagonal or 65-degree horizontal deflection angle. The 19 -inch glass round tubes have a 66-degree deflection angle.

The 19 -inch metal round tube (19A-P4-A, B-C-D) was not listed because there is no direct replacement for it.
We thank Pat Neels, of New York, N. Y. for these corrections.

notice to veterans

Veterans, the deadline for entering or re-entering training under the G.I. Bill of Rights is rapidly approaching. World War II veterans discharged prior to July 25,1947 , who plan to enter or resume training must do so before July 25,1951 , or they will lose their educational benefits. Veterans discharged after July 25, 1947, have four years from the date of discharge to begin training.

CONVERSION DATA!
See AdPage 78

For RCA Victor 630TS see PF INDEX No. 25 FREE-CET IT NOW:

SEND COUPON OR PENNY POSTCARD FOR YOUR FREE COPY TODAY!

I FEILER ENGineering co., Dept. 7aci

Iddrts $\ldots \ldots
Laty

PRACTICAL WIRELESS ENCYCLOPAEILA, by F. J. Camm. Published by George Newnes Ltd., London, England. $53 / 4$ x 9 inches, 372 pages. Price 21 shillings.

This encyclopedia is a comprehensive collection of words, terms, phrases, and formulas commonly employed in radio, television, electronics, and allied fields. It is illustrated with schematic and pictorial diagrams, drawings, tables, and graphs where necessary.
Some American readers would probably have trouble finding or understanding some terms in the encyclopedia because of differences in American and British terminology. For example, there is no definition of a storage battery as such, but almost 20 full pares and 27 illustrations are devoted to the acciomulator which is the British equivalent.-RFS

APPIIED ELECTRONICS ANNUAL, 1951, edited by R. B. Blaise. Published by British-Continental Trade Press, Lid.. 222 Strand, London, England. $73 / 4$ x 93_{4} inches. Price $\$ 8.00$.

This useful manual contains a numher of interesting articles which cover the practical applications of electronics. Each of the articles was written by an expert in his field, and together, surver the industry. "Marine Electronic Equipment," "Printed Circuits" and "Television in Britain" are articles which will be enlightening to the American reader.

In addition to the twenty-four articles, there are a number of directory services which, although they could be more complete, are valuable. These include a directory of the radio and electronics industry which lists the manufacturers of radio and electronic apparatus throughout the world.

COLOR TELEVISION NOTEBOOK, by Edward M. Noll. Published by the Paul H. Wendel I'ublishing Co. for Television Technicians Lecture Bureau, P.O. Box 1321, Indianapolis, Indiana. $81 / 2 \times 11$ inches, 45 pages. Price $\$ 1.00$.

A complete explanation of the principles of color television, with detailed descriptions of the CBS and RCA systems and a shorter discussion of the CTI method. The special features and advantages of each are impartially analyzed and information on receiver adaption and special circuits (crispening, color phasing) is given.

ELECTRONIC SHORTCUTS FOR HOBBYISTS. Sylvania Electric Products Inc., Electronics Division, 1740 Broadway, New York 19, N. Y. 6×9 inches, $¢ 3$ pages. Price, $\$.25$.

This booklet contains 24 crystal diode circuits expressly chosen for their general interest to experimenters and hobbyists. For example, an interval timer, a crystal-powered photo-electric relay, a radio-operated garage door opener, a light-duty electroplater and others are included. The descriptions of construction and operation are straightforward, and the illustrations and diagrams clear. Ratings and characteristics of Sylvania germanium diodes are appended in a 2-page table.

No. 43-MODEL CONTROL BY RADIO. By Edward L. Safford. Jr., 112 pages. An authority in the field of radio control gives you the first complete book on the subject. For beginner and expert. Tells you what radio control is, you it works and how to conhow it works and how to construct not only component parts but a complete system as well. Illustrations explain each step.

No. 42-HIGH-FIDELITY TECHNIQUES. By James R. Langham, 112 pages. You've never seen a technical book like it! Lust as he'd talk to you across the work bench. RADIO-ELECTRONICS* popular audio writer tells you how to design your own equipment and how to get top performance from it Takes the formance fre the double talk out of high-fidelity work.

THREE IMPORTANT 75¢ BOOKS

No. 41-PUBLIC-ADDRESS GUIDE. 80 pages. This handy book shows the service technician the way to extra income in big-paying PA work. Covers installation, maintenance and construction.
No. 40-THE CATHODE-RAY OSCILLOSCOPE. 112 pages. A "must" for servicing TV. FM and AM receivers and in amateur operation! Tells in simple, but technically sound language, how the scope works and how to use it.
No. 39-PRACTICAL DISC RECORDING. 96 pages. Tells you how to make good disc recordings. Covers every phase, theory as well as technique. A full chapter is devoted to each component.

10 POPULAR 64.PAGE BOOKS - 50¢ EACH

No. 29-HANDY KINKS AND SHORT CUTS A treasury of time savers ! Antennas, nower supplies, test equipment, phonographs, amplifiers. Easy reference. Illustrated
No. 30-UNUSUAL PATENTED CIRCUITS. A gold mine of important hook-ups. Control circuits, detectors, amplifiers, power supplies, foreign circuits
No. 31-RADIO QUESTIONS \& ANSWERS. Answers the tough ones on circuit diagrams. amplifiers, receivers, transmitters, meters and test equipment.
No. 32-ADVANCED SERVICE TECHNIOUE. A "must" for the advanced service technician! Covers specialized problems of servicing not usually found in ordinary textbooks. No. 33-AMPLIFIER BUILDER'S GUIDE. For the designer and builder of audio equipment. Covers a variety of ampliners with power outputs from 8 to 30 watts.

No. 34-RADIO.ELECTRONIC CIRCUITS For the experimenter-circuit diagrams of intercom systems, power supplies, volt meters, electronic relays, receivers, etc. No. 35 -AMATEUR RADIO BUILDER'S GUIDE. For the "ham" who builds his own. Receivers, transmitters, antennas, con verters, etc. Practical construction data. No. 36-RADIO TEST INSTRUMENTS. Practical construction data on signal tracers capacity meters, portable and bench multicheckers. voltmeters, etc No. 37-ELEMENTARY RADIO SERVICING How to get started and keep going! Planning the shop, circuit checks, signal tracing ning the shop, circuit checks, slignal tracing No. 38-HOW TO BUILD RADIO RECEIVERS Describes 18 modern sets including shor wescribes 18 moadcast, vhf, portable, ac-operated ac-dc, miniatures-types for every fan.

THE GERNSBACK LIBRARY

SEE YOUR DISTRIBUTOR OR MAIL THIS COUPON TODAY

RADCRAFT PUBLICATIONS, INC. 25 West Broadway, New York 7, N. Y.

$\square 29$	$\square 30$	$\square 31$	$\square 32$
$\square 37$	$\square 38$	$\square 39$	$\square 40$

Enclosed is \$...... for which please send me postpoid, the books checked below
\square 33 $\square 34$ 4243

[^5]

ENTER RADIO TELEVISION

thuithis Foven Plan

As a young man with a career to build. you may today be interested primarily in training for Padio - and perhaps for TV. But - uho knows . . y you may some day have both the desire and opportunity to climb further and become an Electrical Engineer! Here, then, is a world-renowned educational plan that permits you to use your Radio training as a major stepping-stone to an even greater career

IN 12 MONTHS BECOME A RADIO TECHNICIAN

Train here for radio shop operator or serviceman. mobile receivers and all trpes of transmitters, and for supertision of service personnel. You may then advance immediatels, or at any future date. into courses described below.
IN 6 ADDITIONAL MONTHS you become a
Radio-Television Technician
An additional 6 -months course gives you intensive TV Technician's training -under the personal guidance so necessary in this expanding field.
ALSO... YOUR RADIO COURSE IS FULL CREDIT TOWARD THE B.S. DEGREE IN ELECTRICAL ENGINEERING The Radio course, while complete in itself, is one-third of the college program (major in Electronics). Further - you are quided scientifically toward specialization beyond basic engineering training.

B.S. DEGREE IN 36 MOS, Military, practical or prioracademic training evaluated for July, October. January, April.

MILWAUKEE

 SCH00L of ENGINEERING Technical Institute - College of Electrical Engineering

RADIO enainering

B. S. DEGREE IN 27 MONTHS Complete Radio Engineering course incl. Telev U.H.F. and F.M. BS Degree Courses also in Mect,
Civil, Elect, Chem and Aero Eng.; Bus. Adm., Acct. Extensive campus, modern buildings, well equipped labs. Low cost. Prep. courses. Personalized instrue fion. Heavy demand for graduates. Placement servise. Founded in 1884 Prepare now for the civil and March, sune. Wite for Cotolog.

TRI-STATE COLLEGE

2471 COLLEGE AVE.
ANGOLA, INDIANE

TELEVISIOD

PREPARE FOR A GOOD JOB!
COMMERCIAL OPERATOR (CODE)
FADIO SERVICEMAN
TELEVISION SERVICING BROADCAST ENGINEER A.proved for Veterans

EEND JOR FHEE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
I?: Eutau Flace. Dept. C. Baltimore 17. Md.
RADIO and TELEVISION aci Women in All Technical Phases APPROVED FOR VETERANS OREE PLACCEMENT SERVICE FOR GRADUATES

RCA ENSTITUTES, Ine.
A Seraice of Radio Corporation of America

BE YOUR OWN BOSS!
MAKE MORE MONEY

1960R BRTOADWA PLANS COMPANY YORK 23 .

WAVE MECHANICS (second edition) by J. Frenkel. P'ublished by Dover Publications Inc., 1780 Broadway, New York, N. Y., $53 / 4 \times 81 / 4$ inches, 309 pages, 1950, vol. 1. Price $\$ 3.50$.

The first volume of a projected threevolume series, this book covers elementary quantum statistics, wave mechanics, light, and matter. The author combines the chronological development of wave theory with critical analysis of the problems encountered by Newton, Schroedinger, Fermi, and other investigators.

This is a good primer for the person who is interested in an analysis of wave mechanics and modern physics, but higher math is essential.

ALTERNATING-CURRENT CIRCUITS (third edition) by Russell Kerchner and George Corcoran. I'ublished by John Wiley \& Sons, Inc., New York, N. Y. $61 / 4 \times 91 / 4$ inches, 598 pages. Irice $\$ 5.50$.

This book covers the theory and practice of a.c. circuits. It presupposses knowledge of integral and differential calculus on the reader's part. Energy measurement in polyphase circuits, electric filter theory, and power-system short-circuit calculations are among the topics covered. End-of-chapter problems with some answers are included.

THEORY AND DESIGN OF TELEVISION RECEIVERS, by Sid Deutsch. Published by McGraw-Hill Book Co., 330 West 42nd St., New York, N. Y. 6×9 inches, 536 pages, 1951. I'rice $\$ 6.50$.
This is a text, written on the engineering level, which can appeal to the service technician as well as the student. The author has combined lucid description of TV circuit behavior with direct, full presentation of theory-no simple feat. Although mathematics is not avoided it is used judiciously.

One of the more interesting parts of the book is the antenna and r.f. chapter. It is complete and varied, including a description and analysis of airplane disturbance and interference effects, with a chart on fading plotted against relative airplane distance.
The service technician and advanced amateur will profit from the chapters on servicing and fundamentals. A complete list of questions for students is provided at the end of each chapter.

A complete index and list of tables, as well as detailed table of contents is included. There are numerous illustrations.

SEMI-CONDUCTORS, by D. A. Wright. Published by John Wiley \& Sons, Inc., 440 Fourth Avenue, New York, N. Y. $41 / 2 \times 63 / 4$ inches, 130 pages, 19.50. Price $\$ 1.75$.

This book gives an elementary account of the properties of semiconductors, and covers the theory of electron flow in them or across the boundary between them

It brings the reader up to date in this new field of electron physics and presents material otherwise found only in periodical literature.

Special Offer On This

 Complete RADD ENGINEERING LIBRARYNew, Up-To-Date Edition of Famous Library Covers Whole Field of Radio Engineering. Places Latest Facts, Standards, Data, Practice, and Theory At Your Fingertips
The five big volumes of the new edition of the Radio Engineering Library now include the very latest facts, standards, data, and practice. This Library will help solve hundreds of problems for designers, researchers, engineers, and students in any field based on tadio.

Written by leading radio engineers, these books cover circuit phenomena, networks tube theory, vacuum tubes, amplification, measurements. etc.-give specialized treatment of all fields of practical design and application. They provide you with a complete and dependable encyclopedia of facts.

- 5 Volumes, 3872 Pages, 2770 Illustrations
- Eastman's FUNDAMENTALS OF VACUUM TUBES, 3rd Edition.
- Terman's RADIO ENGINEERING. 3rd Edition.
- Everitt's COMMUNICATION ENGINEERING, 2nd Edition.
- Hund's HIGH FREQUENCY MEASUREMENTS, 2nd Edition.
- Henney's RADIO ENGINEERING HAND BOOK, 4th Edition.

SEND NO MONEY

Special Low Price - - Easy Terms

On this special offer you get this Library for $\$ 34.50$, instead of $\$ 39.00$. You save $\$$. 50 and may pay on easy terms. Mail coupon below to examine the Library FREE for 10 days No obligation. These books are recognized as standard works; you are bound to need them. So take advantage of this special moneysaving offer. Mail coupon at once!

McGraw-Hill Book Co., Dept. RE-7

I 327 West 41 st St., New York 18, N. Y
Send for 10 days' FREE trial, the RADIO ENGINEERING LIBRARY. If not satisfied I will return books. Otherwise I will send $\$ 4.50$. 1 plus delivery charges, then; and $\$ 5$ a month for (months. (Reg. price $\$ 39.00$; you save $\$ 4.50$).

- Name
- Home Address

City \& State
:. We'll Pay Delivery Charges if you enclose $\$$. So hrst payment WITH coupon. Same return
privilege for tull refund

ADVERTISING INDEX

Aerovox Corporation

Allied Radio Corporation American Electrical Heater Company Amperite Company Ampl.fier Corporation of America Anchor Radio Corporation Astatic Corporation
Astron Corporation
Barry Electronics
Bell Telephone Laboratories
Boyce-Roche Book Company
Brook Electronics
Brooks Radio Dist.
Brooks Radio Dist.
Buffalo Radio Supply
Butralo Radio Supply
Capitol Radio Engineering institute Certified TV Laborato
Cleveland Institute of Radio Electronics
Coast Electronic Supply Company
Collins Audio Products
Commercial trades
Communications Equipment Company Concord Radio Corporation
Detorest's Training, Incorporoted
 Electro Products Laboratories Electro Sales Electro Sales
Electro-Voice Manufacturing Company Electronic Instrument Company Electronic Measurements Company G Engineering Institute
G and Radio Dist
General Electric Company
General Test Equipment Company
Gensler, B. N.
Greylock Electronic Supply.
Heath Company
Hickok Electrical Instrument Company
Hytron Radio \& Electronics Corp. nstructograph Company
international Correspondence School
JFD Manufacturing Company La Pointe-Plascomold Corporation Leotone Radio Corporation
Long Island Radio Company
Mallory \& Co.. Inc., P. R.
McGraw-Hill Book Company
Merit Transtormers Company
Midwest Radio and IV Corp
Miles Reproducer Company
National Plans Company
National Radio Institute
Niagara Radio Sup
Opportunity Adlets
Penn. Boiler \& Burn
penn. Boiler \& Burner Mfg, Company
Pern Trion Eluctr
Perfection Electric Company
Planet Manufacturina
Panet Manutacturing Company
Precise Company
Precision Apparatus Company
Pres-Probe Company
Progressive Electronic
RCA Institutes. Inc.
RCA Victor Division (Radio Corporation
Radiart Corporation
Radio Cosporation of America
Radio Dealers Supply
Radio Receptor Company, Inc.
PROGRESSIVE TEACHING METHOD

PROGRESSIVE
ELECTRONICS CO.
PT. RE-49 497 UNION AVE.
BROOKLYN 11. N. Y.

PROGRESSIVE ELECTRONICS CO. 497 UNION AVE
DEPT. RE-49 BROOKLYN 11, N. Y.

RADIO SCHOOL DIRECTORY

Baltimore Technical institute
Candler System Company
Eommercial Radio Institute
Electronics institute, Inc.
Hollywood Sound Institute
allywood Technical rnstitute
ndiana Technical Institut
Milwauke School
RCA
Tri State College
Valparaiso Technical Institute
YMCA Trade \& Technical Institute
Rauland Corporation (The)
Raytheon Manufacturing Company
Regency (Div. I.D.E.A. Inc.)
Rek-O-Kut Corparation
Sams \& Company, Inc. Howard W. $12,78,84,91$
prague Products Company
Steve-El Electronics Corporation
Sution's Wholesale Electronics, Bill
Technifax
Television Materials, Inc.
elrex, Incorporated
Thomas Electronics
Thompson Corporation
ransvision, Incorporated
Trio Manufacturing Company
Triplett Elec. Instrument Company
University Loudspeakers
Weller Electric Corporation
Wells Sales
Wholesale Radio Ports
World-Wide Packing \& Shipping Company
Radio-Electronics does not assume responsibility for any errors appearing in the above index.

Center TV Pictures

with the NEW

Snad BeamaJuster on back cover of tube yoke. (Fits any sfandtube.)
2. Rotate Beamaluster as shown here for annroximat
3. Make final adiustment by sliding outer plata cally or horizontally.
Now service men can center TV pictures in 3 seconds instead of 20 to 30 minutes. The new Petfection Beamajuster eliminates costly and compli. cated centering controls of the register type. It also scplaces mechanical centering controls which tilt the focus coil to center the picture and require rumerous springs. wing nuts and special brackets. Once set, the BeamaJuster keeps the picture centcred. No drifting!

Order from your supplierl

PERFECTION ELECTRIC CO.

2645 South Wabash Ave., Chicago 16. Illinois

Also Makers of B.O. (Barkhowsen Oscillation) Eliminators, Perfection Speakers and Ion Traps.
 semi-professional and \longrightarrow experimental use
WRITE YODAY for 12 -page 1951 cotolog. fully尚lustrated, contoining complete technical

AMPIIFIER CORP. of AMERICA
398.7 Broadway, Hew York 13, N. Y.

RADIOMEN'S HEADQUARTERS : ac: WORLD WIDE MAIL ORDER SERVICE!!!

Portable Public Address Ampllifier

Brand new Portable Public Address System complete with everything, including Speaker, Mike and Tubes. Comes in ex-pensive-looking portable case with genuine leather handie and a'rplane luggage covering. Only $\$ 29.95$ complete. Order a half dozen, then rent each out for as little as $\$ 3.00$ a day, and enjoy on income from that source olone of $\$ 6500.00$ a year. BUT, make certain that you get a substantial deposit on each rental, because these amplifiers are so classy looking that many customers will be tempted to lose their deposit and keep your Publ'c Address System.

Buffalo 3, New York
BEST BUY OF THE MONTH
 \title{
BUFFALO RADIO SUPPLY
 \title{
BUFFALO RADIO SUPPLY
 219-221 Genesee St., Dept. RE-7
} MAGXIVOX HICH FIDELITY RECORD DEXUOXSTRATORS

MAGNAYOX DIYIDING NETWORKS
for low and high Frequency Speakers

Calculated crossover frequency for 50% of power to each speaker 400 cycles. Calculated crossover for distribution of $2 / 3$ of the audio output to woofer and $1 / 3$ total output to tweeter is 800 cycles. Includes inductance and capacity sections. Input impedance usable with any speakers. Will handle up to 120 watts of audio power. Similar equipment is catalogued by other manufacturers up to $\$ 35.00$. Your special bargain at $\$ 3.00$ complete, with nothing else to buy.

SENSATIONAL TV

Latest circuit utilizing greatly improved push pul eircuit
Perfect operation on high-

BOMESIGHT
 POWER UNIT

 ters-Easily
Replaced

- Black Fini
- Black Finish for Rust Pro-- Automatic Grip Release After Stripping Automatic
SIMPLE DURABLE INEXPENSIVE 4-Hole Blade. Takes Wires Up To $1 / 4$ "O.D. Gauges No. 14 and Smaller. Sold on a
money-back guar- $\$ 2.95$ $\begin{array}{ll}\text { money-back } \\ \text { antee. } & \text { guar- } \\ \text { NOW }\end{array} \mathbf{2 . 9 5}$

L!NE FILTERS

Type " A "'-Ecch unit contains two 4 Mfd. oil filled condensers and a high inductance 50 Amp . choke in fully shielded case. Suitable heavy current connectors are provided to attach to the input and output connactors at each end of the filter from your input and output wires. A evar noise is to be suppressed or interference abolished. A $\$ 17.00$ value for $\$ 2.98$.
TYPE 'B'" - Heavy duty line filter consisting of 2 condensers and R. F. choke in plated steel case. Conservatively rated at 4 amps and 600 volts. Perfect for
refrigerators, oil burners, power supply input to signal refrigerators, oil burners, power supply input to signal generators or to block out almost any interference
$\mathrm{c} \sim \mathrm{n}$ think of. Super special $\$.75$ each or 10 for $\$ 5.00$

NEW 18:YATT UTILTY AMPLIFIER KIT

Kit Model SA, high quality wide range 18 -watt public address amphifier. Matched component parts.
3 -siage, high-gain circuit with pushpull 7C's output tubes. Dual inputs for mise, phono or radio tuner
 Fuily shielded. Universal output to match any speakers usnd. Fully variable tone control on output. Complete with all parts and tubes. Super Special, $\$ 16.95$.

ARE LOOXING FOR TUBES

PE-98 DYNAMOTORS

12 V . input-12 V. 150 V . \& 300 V outputs. Used with

WORLD'S LAREKST STOCK

Coaxial and "AN." Connectors. Write for price

on types desired. IMMEDIATE DELIVERY
SQR-625 WETALLIS MINE DETECTOR For ferrous or non-ferrous metals, traces under-

35MM 5LIDE PROJECTOR \& ENLARGER

Most territc photographtc pargain of the 2oth century.
: Takes rull flm or $2 \sqrt{2}$ slidesi
Automatic slide changer furnished.
No more waltng for entrremenis to enjoy your
candid shots. All you need is a flat burface to

- Hase 300 w 110 V Bulb, but $6 \mathrm{~V}, 12 \mathrm{~V}, 32 \mathrm{~V}$, or 22 uV - Avalathe
elements ${ }^{\circ}$ opricalsyatem. Noothe
profector on the marke
has more.) projector
han more.)
Automatic Automatic rewlnd or thm, absorblng fiter.
Uleat as an enlarper
se Use as an entarier for
making your own prlints makink your own prints
of any desured size. Plano-Convex Meniscu
Condenser. Brown.
 coated:3.5 lenx
 Projector. Super Special sso.00.
Similar S.V. F. Projector without slide injector and
coated lent $\mathbf{S 3 7 . 5 0}$.
35 mim 15

Ceramic butterfly condensers. Coil sets for either low or high channels. 110 V 60 cycle. Built up $\$ 29.95$ Save half by buying the kit and wiring the parts together from the schematic and pictorial diagrams furnished. Kit $\$ 14.95$.

\section*{115 V., 60 Cycle TRANSFORMERS
 | Size of Set | Secondary | Pric |
| :---: | :---: | :---: |
| 4-5 Tubes | * $650 \mathrm{~V} .-40 \mathrm{Ma}$ - 5 V . \& 2.5 or 6.3 V . | \$1. |
| 5.6 Tubes | *650V. $45 \mathrm{Ma} .-5 \mathrm{~V} . \& 2.5$ or 6.3 V . | 1.9 |
| 6-7 Tubes | -675V.-50Ma.-5V. \& 2.5 or 6.3 V . | 2.3 |
| 7.8 Tubes | * $700,-70 \mathrm{Ma} .-5 \mathrm{~V} . \& 6.3$ or Two 2.5 V . | 3.00 |
| 7-8 Tubes | 700V. 70 Ma - 5 V .86 .3 (25cy.) | 4.5 |
| 8-9 Tubes | $700 \mathrm{~V} .-90 \mathrm{Ma} .-5 \mathrm{~V}-3 \mathrm{~A} .2 .5 \mathrm{~V} .-$ $3.5 \mathrm{~A} .2 .5 \mathrm{~V} .-10.5 \mathrm{~A}$. | |
| 9-11 Tubes | 700 V . -5 V . \& 6.3V. at 4A. | 3.5 |
| 10.15 Tubes | $600 \mathrm{~V} .-150 \mathrm{Ma} .-5 \mathrm{~V} . \& 6.3 \mathrm{~V}$. | 4.0 |
| Fil. Xfmr. | $12 \mathrm{~V} .-40 \mathrm{VA}$. | 1.3 |
| $F \mathrm{Fil}$ Xfmr. | 5 V . - 4 Amp. 10.000 V . Insulation | 1.9 |
| Fil. Xfmr. | $6.3-15 \mathrm{~A} ., 6.3-15 \mathrm{~A}$. | 4.9 |
| Isolation | 115 V . to 115 V - -3 A . Can be used as auto $\times \mathrm{mr}$, to double or halve voltage | |
| Isolation | 6.3 to $6.3-5 \mathrm{~A}$. Can be used as auto $\mathbf{x f m r} .10,000 \mathrm{~V}$. insulation | |

$$
\text { "Specify whether } 6.3 \text { or } 2.5 \mathrm{~V} \text {. Filament is desired. }
$$

PHONO SCRATCH ELIMINATOR

Consists of 2 condensers and powdered iron core choke connected in filter network. Same as used in and amplifier $\$ 2.00$

KITS \& ASSORTMENTS

Mica Condensers
Cersmicon condensers
Cersmicon
Wire woun
100 for $\begin{array}{r}\mathbf{~} 4.95 \\ 15 \text { for } \\ .95\end{array}$
including adj.
Rotary Switches
Grid \& PI. Tube Ca'ps
Knobe Assorted.
Fuses Asst.
Spaghetti Sl
Solder Luks Asst..
Mirro Switches Bo
TV Ose. \& RF Coi

Antenna loops of $\mathrm{Hi}-\mathrm{Q}$, high efficiency type-
high efficiency type-
$\$.35$ each or 4 for $\$ 1.00$ Push button call letter assortments. Complete wilh all United States. Canadian and Mexican stations
in each assortment. Per set $\$.25$ or 37 sets for $\$ 5.00$
Terrific bargain in 6 pole, 6 throw 3 deck wafer switches with sitver plated contacts. Non-shorting type. Perfect for test equipment. Controls 36 circuits. Costs you 36 cents, or 3 for a dollar. Note: of 8 rotary switches for $\$ 175$ that is advertised 8 rotary switches for $\$ 1.75$ that is advertised elsewhere on this page.

$\bullet \bullet

Over a Million in Stock!

Whether you require large quantities of relays for production runs or single units for laboratory or amateur work, Wells can make immediate delivery and save you a substantial part of the cost.

Our capable engineering staff is prepared to offer assistance in the selection of correct types to suit your exact
requirements.
Each relay is brand new, standard moke, inspected, individually boxed and fully guorenteed.

The following list represents orily a tiny portion of our relay stock. Write or wire us ior information on types not

BASIC CONTACT ASSEMBLIES SHOWN IN UNOPERATED NORMAL POSITION
 (Single-Throw, Normally Closed)

WRITE FOR
WELLS CATALOG

Form E-"Break.
Make-Before-Break"
telephone

SEeley 8-4143

Don't let comebacks pick your pocket!

A recent survey among hundreds of servicemen reveals that more of them prefer Mallory Vibrators than all other brands combined. Why? To avoid the problem of costly comebacks! Their solution is . . .

Make Sure! Make it Mallory!

Performance, quality, sound design . . . those are the reasons why servicemen say they prefer Mallory Vibrators. They help cut down on comebacks, permit more time for profitable work.

Mallory led the first commercial vibrator development and today supplies more original equipment vibrators than all other makes combined . . . has always stayed in close touch with your field service needs. Mallory gives you a better vibrator, available in a complete line, meeting required specifications. And Mallory Vibrators cost no more.

Don't just order vibrators! Don't take chances with comebacks! Make it Mallory ... and make sure of positive starting, quiet operation and long life!

Depend on your Mallory Distributor for precision quality at competitive prices.

Lets talk about you...

You're the radio and television serviceman up the street or around the corner who helps the show go on. The full importance of your services is not recognized until somebody's receiver goes bad. Then you're needed . . . just as a policeman or a doctor or a fireman is needed when the occasion arises. You're that important to your community.
We think people ought to be told about you. So, we decided to talk about you in a full-color display you can
place in your window and on your counter . . . to remind folks that you-the radio and television technicianrecognize and live up to your responsibilities as a member of the community.

We owe it to you-and you owe it to yourself - to sell your community on your services. Your local RCA Tube Distributor has a complete packaged promotion built around the Community Service theme. See him today.

ADV Plans,

Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines,
 brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at www.theclassicarchives.com, or our ebay stores:

[^0]: jely, 1951
 RADIO-ELECTRONICS
 Vol. XXII, No. 10
 Published monthly by Radcraft Publications, Inc. Publication Office, Erie Ave., F to G Streets,
 Philadelphia 32, Pa.
 EXECUTIVE, EDITORIAL and ADVERTISING OFFICES: 25 West Broadway, New York 7. N. Y. Teleplione
 SUBSCRIPTIONS: Address Gorrespondence to Hadio-Electronles, Wuhscription Dept., Erie Avenue, F to G Sts.,
 $\$ 3.50$ for one year, $\$ 6.00$ for two sind canada, in T^{2}. S. possessions. Mexico, Nouth an nther foreign countries $\$ 4.50$ a year, 88.00 for two years; 11.00 for three years. Entered as sicond class matter September 27 , 1948 at the dos offle at Philadelphis, Pa.. under the Act of March 3. 1879. Printed In U. S. A. Copyright 1951 hy Raderaft Publications. Inc. Trxt and Illustrations must not he rebroiuced without permission of copyright owners.
 BRANCH ADVERTISING OFFICES: Chicago: 520 N. Michigan Ave, Tulephone ST'perior $7-1796$. Los Angeles Kalph W. Harker. 1127 Wilbhire Blvd., Tel. MA 6-127i. San Francisco: Halph W. Harker, 582 Market st. Tel GArfleld 1-2481. FOREIGN AGENTS: Great Britain: Atlas Publishing and Distrihuting Co., led.. Lonilon E. C. 4 . Australia: McGill's Agency, Melbourne. France: Irrentanos, Paris Qe. Holland: Trilectron, Hpemstede. Greece

[^1]: CASH IN NOW ON THESE G-E "FIRSTS"! SEE YOUR G-E TUBE DISTRIBUTOR!

[^2]: "See also "With the Technician" Section, page 86, this issue.

[^3]: *Technical Staff, WERE, Cleveland, Ohio.

[^4]: *Engineer, WKRC-TV

[^5]: I Nome. .
 Street.
 City.. Zane......... State.........

